Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Journal Article

Modeling the Ignitability of a Pilot Injection for a Diesel Primary Reference Fuel: Impact of Injection Pressure, Ambient Temperature and Injected Mass

2014-04-01
2014-01-1258
In this paper, we studied the accuracy of computational modeling of the ignition of a pilot injectionin the Sandia National Laboratories (SNL) light-duty optical engine facility, using the physical properties of a cetane/iso-cetane Diesel Primary Reference Fuel (DPRF) mixture and the reaction kinetics of a well-validated mechanism for primary reference fuels. Local fuel-air equivalence ratio measurements from fuel tracer based planar laser-induced fluorescence (PLIF) experiments were used to compare the mixture formation predictions with KIVA-ERC-based simulations. The effects of variations in injection mass from 1 mg to 4 mg, in-cylinder swirl ratio, and near-TDC temperatures on non-combusting mixture preparation were analyzed, to assess the accuracy of the model in capturing average jet behavior, despite its inability to model the non-negligible jet-by-jet variations seen in the experiments.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
X