Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Technical Paper

Fuel Chemistry Impacts on Gasoline HCCI Combustion with Negative Valve Overlap and Direct Injection

2007-10-29
2007-01-4105
Homogeneous Charge Compression Ignition (HCCI) combustion has the potential to produce low NOx and low particulate matter (PM) emissions while providing high efficiency. In HCCI combustion, the start of auto-ignition of premixed fuel and air depends on temperature, pressure, concentration history during the compression stroke, and the unique reaction kinetics of the fuel/air mixture. For these reasons, the choice of fuel has a significant impact on both engine design and control strategies. In this paper, ten (10) gasoline-like testing fuels, statistically representative of blends of four blending streams that spanned the ranges of selected fuel properties, were tested in a single cylinder engine equipped with a hydraulic variable valve train (VVT) and gasoline direct injection (GDI) system.
Technical Paper

Dynamic Stage of Combustion in a Direct Injection Methanol Fueled Engine

2002-03-04
2002-01-0998
The paper is based on the premise that the sole purpose of combustion in piston engines is to generate pressure for pushing the expansion process away from the compression process (both expressed in terms of appropriate polytropes) to create a work producing cycle. This essential process, referred to as the dynamic stage of combustion, is carved out of the cycle and its salient properties deduced from the measured pressure profile, as a solution of an inverse problem: deduction of information on an action from its outcome. An analytical technique, construed for this purpose, is first presented and, then, applied to a direct injection, spark-ignition, methanol fueled four-stroke engine.
Technical Paper

Pressure Diagnostics of Closed System in a Direct Injection Spark Ignition Engine

2003-03-03
2003-01-0723
The sole purpose of combustion in a piston engine is to generate pressure in order to push the piston and produce work. Pressure diagnostics provides means to deduce data on the execution of the exothermic process of combustion in an engine cylinder from a measured pressure profile. Its task is that of an inverse problem: evaluation of the mechanism of a system from its measured output. The dynamic properties of the closed system in a piston engine are expressed in terms of a dynamic stage - the transition between the processes of compression and expansion. All the phenomena taking place in its course were analyzed in the predecessor of this paper, SAE 2002-01-0998. Here, on one hand, its concept is restricted to the purely dynamic effects, while on the other, the transformation of system components, taking place in the course of the exothermic chemical reaction to raise pressure, are taken into account by the exothermic stage.
Technical Paper

Development of a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2017-03-28
2017-01-0632
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of engine systems, especially for combustion system.
Technical Paper

Development of Combustion System for a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2016-10-17
2016-01-2243
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of the combustion system. Considering air/fuel mixture, fuel wall impingement and even future potential for lean burn combustion, a symmetrical layout and a central position for the injector with 200bar injection pressure was determined.
Technical Paper

Influences of Intake Charge Preparations on HCCI Combustion in a Single Cylinder Engine with Variable Valve Timing and Gasoline Direct Injection

2006-10-16
2006-01-3274
Intake charge preparation has strong effects on HCCI combustion, especially on the start of ignition. In this paper, the influence of different intake charge preparation modes on HCCI combustion in a single cylinder engine equipped with a hydraulic variable valve train (VVT) and gasoline direct injection (GDI) system is studied. By using VVT and GDI, three different intake charge preparation modes are implemented: re-compression early injection (RCEI), re-compression split injection (RCSI), and re-breathing early injection (RBEI). For each intake charge preparation mode, three engine operating conditions are investigated: 1.5 bar IMEP at 1000 rpm, 3 bar IMEP at 2000 rpm, and 6 bar/deg of maximum rate of pressure rise at 3000 rpm (IMEP's very near 3 bar). For all engine operating conditions and intake charge preparation modes, the combustion phasing, represented by the 50% mass fraction burned location (CA50), were fixed at 5 degrees after top dead center.
Technical Paper

Modeling and Analysis of Microwave Regeneration Process in Wall-Flow Diesel Particulate Filter

2012-04-16
2012-01-1289
To meet more stringent emission regulations for diesel engines, diesel particulate filters (DPF) have been widely used for diesel engines. However, the DPF regeneration is a great challenge for fuel economy. In this paper, a mathematical model characterizing the microwave regeneration process of a wall-flow particulate filter is introduced to better understand the process. Based on this model, important parameters such as evolutions of the energy stream densities of microwaves, wall temperature, regeneration efficiency and the pressure drop in the filters, both cordierite and SiC, are investigated. These results can provide an important theoretical guide for optimizing and controlling the microwave regeneration process.
Technical Paper

Numerical Simulation on Spray Atomization and Fuel-Air Mixing Process in a Gasoline Direct Injection Engine

2012-04-16
2012-01-0395
Numerical simulation has been widely used in the engine development process to improve the development quality, especially in the area of in-cylinder flow and fuel evaporation. In this paper, a fuel spray model for a gasoline direct injection (GDI) engine, calibrated against spray visualization in a spray bomb, is developed to characterize the fuel spray atomization, vaporization, and interaction with in-cylinder air flow. With this model, fuel atomization and fuel-air mixing process are thoroughly analyzed at full load operating conditions at both low and high speeds. It is shown that fuel spray at high speed is deflected towards intake side, leading to limited wall wetting, piston wetting, and good vaporization, due to intensive tumble flow and high temperature. The results from the numerical simulation provide important guideline for the development of a GDI engine.
Technical Paper

Design of Engine Gear-Driven Mass Balance Unit and NVH Performance Optimization

2012-04-16
2012-01-0890
Extensive experimental and numerical investigations with respect to mass balance unit (MBU) were reported to improve the vibration and acoustic performance for inline 4-cylinder engine due to unbalanced inherent secondary order inertial forces. Design of gear-driven MBU with two parallel shafts and two gear pairs which was positioned beneath the crankshaft would be described in the paper. For the sake of compact package and reliable design, the driving gear ring of the system was shrink fitted onto the crankweb, and issues such as lubrication, strength, assembly were taken into account during design process. As a result, 93.66% of 2nd order mass force balance was achieved and2nd vibration level of engine was decreased remarkably. However, acoustical behavior was deteriorated due to gear impact and rattle at the engagement. Extra efforts were paid to solve the unpleasant noise through internal and external excitation optimizations.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly

2003-03-03
2003-01-1357
The existence of the cyclic variation of the flow inside an cylinder affects the performance of the engine. Developing methods to understand and control in-cylinder flow has been a goal of engine designers for nearly 100 years. In this paper, passive control of the intake flow of a 3.5-liter DaimlerChrysler engine was examined using a unique optical diagnostic technique: Molecular Tagging Velocimetry (MTV), which has been developed at Michigan State University. Probability density functions (PDFs) of the normalized circulation are calculated from instantaneous planar velocity measurements to quantify gas motion within a cylinder. Emphasis of this work is examination of methods that quantify the cyclic variability of the flow. In addition, the turbulent kinetic energy (TKE) of the flow on the tumble and swirl plane is calculated and compared to the PDF circulation results.
X