Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Technical Paper

Scalable Simulation Environment for Adaptive Cruise Controller Development

2020-04-14
2020-01-1359
In the development of an Adaptive Cruise Control (ACC) system, a model-based design process uses a simulation environment with models for sensor data, sensor fusion, ACC, and vehicle dynamics. Previous work has sought to control the dynamics between two vehicles both in simulation and empirical testing environments. This paper outlines a new modular simulation framework for full model- based design integration to iteratively design ACC systems. The simulation framework uses physics-based vehicle models to test ACC systems in three ways. The first two are Model-in-the-Loop (MIL) testing, using scripted scenarios or Driver-in-the-Loop (DIL) control of a target vehicle. The third testing method uses collected test data replayed as inputs to the simulation to additionally test sensor fusion algorithms. The simulation framework uses 3D visualization of the vehicles and implements mathematical driver comfortability models to better understand the perspectives of the driver or passenger.
X