Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of Using a Reinforcement Learning Method to Improve Fuel Consumption of a Connected Vehicle with Signal Phase and Timing Data

2020-04-14
2020-01-0888
Connected and automated vehicles (CAVs) promise to reshape two areas of the mobility industry: the transportation and driving experience. The connected feature of the vehicle uses communication protocols to provide awareness of the surrounding world while the automated feature uses technology to minimize driver dependency. Constituting a subset of connected technologies, vehicle-to-infrastructure (V2I) technologies provide vehicles with real-time traffic light information, or Signal Phase and Timing (SPaT) data. In this paper, the vehicle and SPaT data are combined with a reinforcement learning (RL) method as an effort to minimize the vehicle’s energy consumption. Specifically, this paper explores the implementation of the deep deterministic policy gradient (DDPG) algorithm. As an off-policy approach, DDPG utilizes the maximum Q-value for the state regardless of the previous action performed.
Technical Paper

Scalable Simulation Environment for Adaptive Cruise Controller Development

2020-04-14
2020-01-1359
In the development of an Adaptive Cruise Control (ACC) system, a model-based design process uses a simulation environment with models for sensor data, sensor fusion, ACC, and vehicle dynamics. Previous work has sought to control the dynamics between two vehicles both in simulation and empirical testing environments. This paper outlines a new modular simulation framework for full model- based design integration to iteratively design ACC systems. The simulation framework uses physics-based vehicle models to test ACC systems in three ways. The first two are Model-in-the-Loop (MIL) testing, using scripted scenarios or Driver-in-the-Loop (DIL) control of a target vehicle. The third testing method uses collected test data replayed as inputs to the simulation to additionally test sensor fusion algorithms. The simulation framework uses 3D visualization of the vehicles and implements mathematical driver comfortability models to better understand the perspectives of the driver or passenger.
Technical Paper

Swing Energy Recuperation Scheme for Hydraulic Excavators

2014-09-30
2014-01-2402
Due to the high demand of fuel efficient construction equipment, significant research effort has been dedicated to improving excavator efficiency. Among various possibilities, methods to recuperate energy during cab swing motion have been widely examined. Electric and hydraulic hybrids designs have shown to greatly improve fuel efficiency but require drastic design changes. The redesigned systems thus require many hours of operation to offset the manufacturing costs with fuel savings. In this research, a relatively simple swing energy recuperation system is presented using an additional accumulator, fixed displacement hydraulic motor, and control valves. With the system, hydraulic fluid is stored in an accumulator, and a simple controller opens a valve to allow the stored energy to assist the engine in running the main pumps.
X