Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Journal Article

Critical Aspects on the Use of Thermal Wall Functions in CFD In-Cylinder Simulations of Spark-Ignition Engines

2017-03-28
2017-01-0569
CFD and FE tools are intensively adopted by engine manufacturers in order to prevent thermo-mechanical failures reducing time- and cost-to market. The capability to predict correctly the physical factors leading to damages is hence essential for their application in the industrial practice. This is even more important for last generation SI engines, where the more and more stringent need to lower fuel consumption and pollutant emissions is pushing designers to reduce engine displacement in favor of higher specific power, usually obtained by means of turbocharging. This brings to a new generation of SI engines characterized by higher and higher adiabatic efficiency and thermo-mechanical loads. A recent research highlighted the different behavior of the thermal boundary layer of such engines operated at high revving speeds and high loads if compared to the same engines operated at low loads and revving speeds or even engines with a lower specific power.
Journal Article

Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine

2017-03-28
2017-01-0551
Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
Journal Article

CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine

2016-04-05
2016-01-0601
The occurrence of knock is the most limiting hindrance for modern Spark-Ignition (SI) engines. In order to understand its origin and move the operating condition as close as possible to onset of this potentially harmful phenomenon, a joint experimental and numerical investigation is the most recommended approach. A preliminary experimental activity was carried out at IM-CNR on a 0.4 liter GDI unit, equipped with a flat transparent piston. The analysis of flame front morphology allowed to correlate high levels of flame front wrinkling and negative curvature to knock prone operating conditions, such as increased spark timings or high levels of exhaust back-pressure. In this study a detailed CFD analysis is carried out for the same engine and operating point as the experiments. The aim of this activity is to deeper investigate the reasons behind the main outcomes of the experimental campaign.
Journal Article

Numerical Simulation of Gasoline and n-Butanol Combustion in an Optically Accessible Research Engine

2017-03-28
2017-01-0546
Conventional fossil fuels are more and more regulated in terms of both engine-out emissions and fuel consumption. Moreover, oil price and political instabilities in oil-producer countries are pushing towards the use of alternative fuels compatible with the existing units. N-Butanol is an attractive candidate as conventional gasoline replacement, given its ease of production from bio-mass and key physico-chemical properties similar to their gasoline counterpart. A comparison in terms of combustion behavior of gasoline and n-Butanol is here presented by means of experiments and 3D-CFD simulations. The fuels are tested on a single-cylinder direct-injection spark-ignition (DISI) unit with an optically accessible flat piston. The analysis is carried out at stoichiometric undiluted condition and lean-diluted mixture for both pure fuels.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

2017-03-28
2017-01-0549
In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Numerical Comparison of the Performance of Four Cooling Circuit Designs for Proton Exchange Membrane Fuel Cells (PEMFCs)

2022-03-29
2022-01-0685
Polymer Electrolyte Membrane Fuel Cell (PEMFC) are among the most promising technologies as energy conversion devices for the transportation sector due to their potential to eliminate, or greatly reduce, the production of greenhouse gases. One of the current issues with this type of technology is thermal management, which is a key aspect in the design and optimization of PEMFC, whose main aim is an effective and balanced heat removal, thus avoiding thermal gradients leading to a cell lifetime reduction as well as a decrease in the output performance. In addition, a uniform temperature distribution contributes to the achievement of a uniform current density, as it affects the rate of the electrochemical reaction. This is made even more challenging due to the low operating temperature (80°C), reducing the temperature difference for heat dissipation, and leaving a critical role to the design and optimization of the cooling circuit design.
Technical Paper

Numerical Simulation of Advanced Bipolar Plates Materials for Hydrogen-Fueled PEM Fuel Cell

2022-03-29
2022-01-0683
Hydrogen-fueled Proton Exchange Membrane Fuel Cells (PEMFC) are considered one of the most promising technologies for a fully sustainable power generation in the transportation sector, thanks to the direct conversion of chemical-electrical energy, the absence of harmful emissions, the optimal power density, and the allowable long-distance driving range. A current technological issue preventing their large-scale industrialization is the thermal management of PEMFC stacks, due to the absence of the heat removal action operated by exhaust gases in internal combustion engines, the low-temperature generated heat and the limited exchange areas in mobile applications. A relevant role in heat dissipation is played by bipolar plates, being the components with the largest volume occupation and greatly contributing to the PEMFC weight and cost.
Technical Paper

Impact of Grid Density and Turbulence Model on the Simulation of In-Cylinder Turbulent Flow Structures - Application to the Darmstadt Engine

2021-04-06
2021-01-0415
The paper reports a wide numerical analysis of the well-known “Darmstadt engine” operated under motored condition. The engine, which features multiple optical accesses and is representative of currently made four-valve pentroof GDI production engines, is simulated using computational grids of increasing density and two widely adopted approaches to model turbulence, Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES). In the first part of the paper, attention is focused on the increase of grid density within the RANS modelling framework: both bulk-flow grid density and near-wall grid density are varied in order to analyse potentials and limitations of the different grid strategies and evaluate the trade-off between accuracy and computational cost.
Technical Paper

Numerical Investigation on the Effects of Water/Methanol Injection as Knock Suppressor to Increase the Fuel Efficiency of a Highly Downsized GDI Engine

2015-09-06
2015-24-2499
A new generation of highly downsized SI engines with specific power output around or above 150 HP/liter is emerging in the sport car market sector. Technologies such as high-boosting, direct injection and downsizing are adopted to increase power density and reduce fuel consumption. To counterbalance the increased risks of pre-ignition, knock or mega-knock, currently made turbocharged SI engines usually operate with high fuel enrichments and delayed (sometimes negative) spark advances. The former is responsible for high fuel consumption levels, while the latter induce an even lower A/F ratio (below 11), to limit the turbine inlet temperature, with huge negative effects on BSFC. A possible solution to increase knock resistance is investigated in the paper by means of 3D-CFD analyses: water/methanol emulsion is port-fuel injected to replace mixture enrichment while preserving, if not improving, indicated mean effective pressure and knock safety margins.
Technical Paper

Numerical Simulation of Syngas Blends Combustion in a Research Single-Cylinder Engine

2019-09-09
2019-24-0094
Despite syngas is a promising alternative fuel for internal combustion engines (ICEs), its extensive adoption has not been adequately investigated so far. The dedicated literature offers several fundamental studies dealing with H2/CO blends burning at high pressure and room temperature, as well as preheated mixture at low pressure. However, these thermodynamic states are far from the operational conditions typical of ICEs. Therefore, it is essential to investigate the syngas combustion process at engine-like conditions to shed light on this fuel performance, in order to fully benefit from syngas characteristics in ICE application. One of the key properties to characterize a combustion process is laminar flame speed, which is also used by the most widespread turbulent combustion models.
X