Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

OBIGGS for Fuel System Water Management - Proof of Concept

2011-10-18
2011-01-2793
Fuel on-board dehydration during flight technologies has been modeled and experimentally studied on a laboratory testing setup in normal specific gas flow rates range of 0.0002-0.0010 sec-₁. Natural air evolution, ullage blowing and fuel sparging with dry inert gas have been studied. It has been shown that natural air evolution during aircraft climb provides a significant, substantial, but insufficient dehydration of fuel up to 20% relative. Ullage blowing during cruise leads to a constant, but a slow dehydration of fuel with sufficient column height concentration gradient. Dry inert gas sparging held after the end of the natural air evolution or simultaneously with natural air evolution provides rapid fuel dehydration to the maximum possible values. It potentially may eliminate water release and deposition in fuel to -50°C. It has been found that for proper dehydration, necessary and sufficient volume of dry inert gas to volume of fuel ratio is about 1.
Technical Paper

Mathematical Model of Water Contamination in Aircraft Fuel Tanks

2011-10-18
2011-01-2540
Water is a contaminant that can lead to fuel system icing, microbial contamination, corrosion and fuel quantity gauging problems and therefore an efficient water management system is required in order to maximise the performance of an aircraft's fuel system. This paper describes a time-transient aircraft fuel tank model with water contamination, due to the principal mechanisms of dissolution, suspension, condensation and transportation. The tank model presented is a component of the NEPTUNE fuel system model which was developed for Airbus using the A380 as an example aircraft. A description of the physics of water contaminated fuel is given and of how this has been incorporated into a mathematical model of an aircraft fuel tank. A modular approach is demonstrated which enables interconnecting fuel tanks to be configured in larger systems in a flexible and easily understood manner.
Technical Paper

Behaviour of Water in Jet Fuel in a Simulated Fuel Tank

2011-10-18
2011-01-2794
Experimental studies were performed to gain a better understanding of the behaviour of water in jet fuel at low temperatures. The transition of water in fuel from dissolved water to free water, and its subsequent precipitation behaviour when the fuel was cooled down, were investigated using a 20 litre glass-windowed aluminium tank. The effects of cooled internal surfaces were explored with chilled plates at the top and bottom of the aluminium tank. The tank was fitted with an array of thermocouples, which allowed horizontal and vertical temperature profiles to be measured. A laser visualisation system incorporating image processing software was used to capture images inside the simulated tank without interfering with the convective flow of the fuel. Fuel will precipitate any excess dissolved water when cooled below the saturation temperature. The excess water may then appear in the form of fine water droplets or ice particles as a fine cloud (fog).
Technical Paper

Dimensional Analysis to Parameterise Ice Accretion on Mesh Strainers

2011-10-18
2011-01-2795
Water is always present in jet fuel, usually in a mixture of forms. At very low temperatures this phenomenon can lead to the formation of ice crystals within the aircraft fuel system, which can then stay in suspension within the entire volume of fuel. Pumps within the fuel system transfer fuel around the system. Pumps such as boost pumps that are typically used in fuel systems are protected by a weave type filter mesh at the inlet. Ice accretion on the surface of this mesh has operational implications as it can cause non optimal fuel flow. In this investigation, two fundamental tools are being used: 1) a high fidelity MATLAB model of a mesh strainer, pick-up line and pump, and 2) a test rig of the modelled system. The model is being used to investigate fuel system performance when exposed to fuel containing water/ice contaminants at cold temperatures.
X