Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Potential of Reduced Fuel Consumption of Diesel-Electric APUs at Variable Speed in Mobile Applications

2011-09-11
2011-24-0075
Auxiliary power units (APUs) are used in mobile applications to provide electrical power until approx. 10 kW. It is state of the art that these generators are driven by a diesel engine at constant speed and are selected according to the expected maximal power needed. These systems have a low efficiency and consequently a high fuel consumption particularly when driven at small loads. The system can yield a higher efficiency for partial load conditions by reducing the rotary speed of the driving diesel engine. The optimum in rotary speed of the diesel engine for different loads is pre-programmed (engine mapping) in the diesel control unit. A frequency converter allows a constant frequency of the electricity output at variable speed of the generator. These higher costs for frequency converter and diesel controller demand especially for mobile applications a proof of efficiency, i.e. a proof of economics, which is shown in this paper.
Technical Paper

Distribution of Cooling Structures in Water Cooled Electrical Machines Using Localized Loss Profiles

2023-08-28
2023-24-0126
Cooling is a critical factor for improving power density in electrical appliances, especially in integrated drives for mobile applications. However, the issue of distributed losses in electric machines can lead to hotspots and temperature gradients within the electric drive. Traditional cooling jackets use unidirectional flow without or with evenly distributed cooling structures. This often aggravates the issue of hotspots, resulting in thermal derating and thus limiting the operation range. As well, a non-demand oriented distribution of cooling structures leads to unnecessary pressure losses. This problem is addressed with a newly elaborated method for distributing cooling elements, i.e., pin fins with varying density distribution inside the cooling channel. Results from previous work, numerical simulations, and measurement data from a planar test bench are used. The approach segments the cooling channel by using a loss profile.
X