Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Experimental Investigation of Fuel Injection and Spark Timing for the Combustion of n-Butanol and iso-Butanol and Their Blends with Gasoline in a Two-Cylinder SI Engine

2017-09-04
2017-24-0115
In this study, the combustion of butanol, neat and mixed with gasoline, was investigated on a 0.6 liter two-cylinder spark ignition engine with fully adjustable fuel injection and spark timing, coupled with an eddy current dynamometer. Two isomers of butanol, n-butanol and iso-butanol, were examined. This basic parameter study gives information about potential requirements of engine control systems for butanol FFV. Compared to the traditionally used ethanol, butanol does not exhibit hygroscopic behaviour, is chemically less aggressive and has higher energy density. On other hand, different laminar burning velocity and higher boiling temperature of butanol, compared to gasoline, requires some countermeasures to keep the engine operation reliable and efficient.
Technical Paper

Effect of Higher Content N-Butanol Blends on Combustion, Exhaust Emissions and Catalyst Performance of an Unmodified SI Vehicle Engine

2012-09-10
2012-01-1594
To reduce exhaust emissions and dependency on petroleum-based fuels, various alcohols have been considered as gasoline substitutes for spark ignition engines. In the existing vehicle fleet, the use of ethanol, the most widely used alcohol, is practically limited to blends in relatively small concentrations with gasoline, due to its hygroscopicity, aggressivity, substantially lower heat content, and high latent heat. Butanol has relatively low toxicity, can be produced from biomass, and has higher energy density, lower latent heat, lower hygroscopicity and lower aggressivity than ethanol. In this study, the effects of blends of 30% and 50% of n-butanol (1-butanol) with gasoline on combustion process, engine control unit adaptation and exhaust emissions before and after a three-way catalyst were examined on a 1.2-liter, three-cylinder, four-valves-per-cylinder, naturally aspirated port-fuel-injected Skoda 1.2 HTP spark ignition engine coupled to an engine dynamometer.
Technical Paper

Real-World On-Road Exhaust Emissions from an Ordinary Gasoline Car Operated on E85 and on Butanol-Gasoline Blend

2013-09-08
2013-24-0102
Bioethanol, produced from renewable sources, is promoted as a fuel in higher concentrations in newer flexible fuel engines, and in lower concentrations in the general fleet. Introduction of a blend of 85% ethanol with gasoline (E85) at a competitive price in the Czech Republic has, however, spontaneously resulted in this fuel being used in “ordinary” engines not adapted for this fuel. This study investigates the operation of a typical gasoline car with fuel injection and three-way catalyst on gasoline, E85, and additionally on a blend of 85% n-butanol with gasoline, as butanol features better material compatibility than ethanol. The car was equipped with a portable, on-board emissions monitoring system and driven along a route comprising city and rural roads, including hills. Multiple runs were made on each fuel to verify test-to-test repeatability.
Technical Paper

Influences of Butanol Blends on Combustion and Emissions of a Small SI Engine

2018-10-30
2018-32-0058
In the general efforts to replace the fossil fuels in transportation by renewable fuels the bioalcohols are an important alternative. The global share of Bioethanol used for transportation is continuously increasing. Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for Gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than Ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. In the present work research with different nButanol portions in gasoline (BuXX)* was performed on the 2-cylinder SI engine with variations of several parameters on engine dynamometer. At different steady state operating points were varied: spark timing (αz), air excess factor (λ) and EGR-rate. Furthermore, the conversion rates and light-off of a 3-way-catalyst were investigated.
Technical Paper

Real Driving Emissions of Two Older Ordinary Cars Operated on High-Concentration Blends of N-Butanol and ISO-Butanol with Gasoline

2015-09-06
2015-24-2488
Butanol, which can be produced from biomass, has been suggested as an alternative to ethanol, due to its higher energy density, lower oxygen content and more favorable hygroscopic and corrosive properties. In the Czech Republic, E85 is widely sold at fuel stations and used in ordinary vehicles, both with and without aftermarket control units. This work investigates the potential of ordinary automobiles to run on butanol, and the associated effects on exhaust emissions under real driving conditions. A Škoda Felicia car with a throttle body injection and a Škoda Fabia car with a multi-point port injection have been run on gasoline and its mixtures with up to 85% volume of ethanol, of n-butanol, and of isobutanol (2-methyl-1-propanol). An auxiliary control unit has been used with higher alcohol content. On each fuel, each car was driven 5-6 times along a local test route.
Technical Paper

Measurement of Exhaust Emissions of Small Gasoline Engines Under Real-World Driving Conditions

2014-10-13
2014-01-2811
The paper focuses on portable “on-board” instrumentation and methods for evaluation of exhaust emissions from scooters and various small machinery under real-world driving conditions. Two approaches are investigated here. In one, a miniature on-board system mounted on the equipment itself performs online measurements of the concentrations of the pollutants of interest (HC, CO, CO2, NOx, some property of particulate matter), and measurement or computation of the intake air flow. This approach has been used on a 50 cm3 scooter fitted with a 14-kg on-board system and driven on local routes. Measured concentrations of gaseous compounds, particle mass and total particle length were multiplied with the corresponding intake air flow computed from measured engine rpm, intake air manifold pressure and temperature. In the second approach, a full-flow dilution tunnel, gas analyzers and particle measurement or sampling devices are mounted on an accompanying hand cart or vehicle.
X