Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Coupled Weld-Rupture Analysis of Automotive Assemblies: A Study to Demonstrate the Impact of Welding Processes on the Performance of Weldments

2020-04-14
2020-01-1076
Welding processes are complex in nature. They affect the mechanical properties of a weldment in and around the welding joint (in the heat affected zone: HAZ), causing deformation and inducing high level of residual stress and plastic strain which are detrimental to the weldment performance. After welding some materials soften while others harden in the heat affected zone, depending on the process heat input, the thickness of the material and its chemical composition. Traditionally, finite element (FE) performance analyses (crash, rupture, fatigue, static and dynamic tests) of weldments are performed without accounting for the effects of welding processes and as such the real performance of a weldment is not accurately predicted. On one hand, if base material properties are used to represent a weldment which hardens in the heat affected zone, the performance analysis results would be too conservative which would hinder/limit potential weight reduction strategies.
Technical Paper

Virtual Seat Comfort Engineering through Hardness and Initial Softness Prediction

2007-06-12
2007-01-2455
This paper presents the second part of a multi-phased, both experimental and numerical project, devoted to the use of Virtual Prototyping techniques for seat design. The aim of this stage is to assess the capabilities of a CAE methodology to predict some comfort-related mechanical parameters, such as overall hardness and plushness, as a base engineering approach to quantify an occupant perception of both long- and short-term comfort. For hardness, a simple human surrogate (SAE AM50 Buttock Form) is applied on the bottom cushion of a fully trimmed, current production FORD seat, following a load cycle. For initial softness, a round probe is indented at different locations of both backrest and bottom cushions, following loading cycles. The resulting load-deflection curves predicted by numerical simulation are in good agreement with the experimental ones.
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
X