Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine - Focus on Octane Numbers and Latent Heat of Vaporization

2009-04-20
2009-01-0324
Facing the CO2 emission reduction challenge, the combination of downsizing and turbocharging appears as one of the most promising solution for the development of high efficiency gasoline engines. In this context, as knock resistance is a major issue, limiting the performances of turbocharged downsized gasoline engines, fuel properties are more than ever key parameters to achieve high performances and low fuel consumption's levels. This paper presents a combustion study carried out into the GSM consortium of fuel quality effects on the performances of a downsized turbocharged Direct Injection SI engine. The formulation of two adapted fuel matrix has allowed to separate and evaluate the impacts of three major fuel properties: Research Octane Number (RON), Motor Octane Number (MON) and Latent Heat of Vaporization (LHV). Engine tests were performed on a single cylinder engine at steady state operating condition.
Technical Paper

Ethanol as a Diesel Base Fuel - Potential in HCCI Mode

2008-10-06
2008-01-2506
This work studies the potential of ethanol-Biodiesel-Diesel fuel blends in both conventional Diesel and HCCI combustion modes. First, ethanol based fuels were tested on a modern commercial multi-cylinder DI diesel engine. The aim of this phase was to assess how such fuels affect Diesel engine performances and emissions. These results indicate that low levels of PM and NOx emissions, with a contained fuel consumption penalty and with an acceptable noise level, are achievable when the Diesel-ethanol blends are used in combination with an optimized combustion control. Moreover, experiments with ethanol based blends were performed using a single cylinder engine, running under both early injection HCCI and Diesel combustion modes. Compared to a conventional fuel, these blends allow increasing the HCCI operating range and also lead to higher maximum power output in conventional Diesel combustion.
Technical Paper

Effect of Fuel Characteristics on the Performances and Emissions of an Early-injection LTC / Diesel Engine

2008-10-06
2008-01-2408
New combustion processes like LTC (Low Temperature Combustion) that includes HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), PPCI (Partial Premixed Compression Ignition)… are promising ways to reduce simultaneously NOx and PM. Nevertheless, these combustion processes can be used only on a limited part of the engine load and speed map. Therefore, it appeared interesting to assess how the fuel, through its characteristics, could enhance the operating range in such combustion processes. That was the aim of an international consortium carried out by IFP and supported by numerous industrial companies. First a specific procedure has been developed to compare the different fuels on a early injection HCCI single cylinder engine. Then, using this procedure, a matrix of fuels having different cetane numbers (CN = 40-63), volatilities and chemical compositions has been tested.
X