Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Experimental Study on Particulate Emission Characteristics of an Urban Bus Equipped with CCRT After-Treatment System Fuelled with Biodiesel Blend

2017-03-28
2017-01-0933
Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
Technical Paper

Chassis Dynamometer and On-Road Evaluations of Emissions from a Diesel-Electric Hybrid Bus

2017-03-28
2017-01-0984
Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly. Then the Real Driving Emissions (RDE) of the DHEB are compared with the dynamometer test results.
Technical Paper

Effects of DOC and CDPF Catalyst Composition on Emission Characteristics of Light-Duty Diesel Engine with DOC + CDPF + SCR System

2018-04-03
2018-01-0337
With regulatory standards for diesel engine emissions becoming stricter worldwide, integrated catalytic systems are becoming increasingly necessary. One of the better approaches is to use an after-treatment system consisting of a diesel oxidation catalyst (DOC), a catalyzed diesel particulate filter (CDPF), and a selective catalytic reduction (SCR), but many factors can affect how well this system works. This study investigates the effects of DOC and CDPF catalyst composition on emissions characteristics for DOC + CDPF + SCR systems by collecting reactor and engine data. The reactor results show that the light-off temperatures (T50) of CO and C3H6 increase with the growth of Pt:Pd ratio while the T50 of NO degrades. An engine dynamometer test was conducted on a light-duty diesel engine equipped with DOC + CDPF + SCR. The results show light-off curves of CO and THC that are smoother than the reactor data.
Technical Paper

The Emission of a Diesel Engine in Different Coolant Temperature during Cold Start at High Altitude

2019-04-02
2019-01-0730
Emissions of diesel engine have been received much more attention since the Volkswagen Emission Scandal. The Euro VI emission standard has already included cold start emissions in the legislative emission driving cycles which is one of the hardest part of emission control. High altitude performance is also considered in the latest regulations which will be stricter in the future. Heating the coolant is one of the most common method to improve the cold start performance. But researches focus on the emission of a diesel engine in different coolant temperature at high altitude which up to 4500m have not been seen. The present research investigated the effect of coolant temperature on performance and exhaust emissions (gaseous and particulate emissions) during the cold start of a diesel engine. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments from 0m to 4500m, and the coolant temperature was controlled from 20°C to 60°C.
Technical Paper

Study on Real-World NOx and Particle Emissions of Bus: Influences of VSP and Fuel

2019-04-02
2019-01-1181
In this study, the real-world NOx and particle emissions of buses burning pure diesel fuel (D100), biodiesel fuel with 20% blend ratio (B20) and liquefied natural gas (LNG) were measured with portable emission measurement system (PEMS). The measurement conducted at 6 constant speed, which ranged from 10km/h to 60 km/h at 10km/h intervals, and a period of free driving condition. The relationship between vehicle specific power (VSP) and NOx/particle emissions of each bus were analyzed. The results show that the change rules of NOx, PN and PM emission factors with the increase of VSP were basically the same for the same bus, but for the bus using different fuel, the change rules may change. In VSP bin 0, the vehicles were mostly in idle condition and the emission factors of NOx, PN and PM of three buses were all in a relatively high level. In low VSP interval, which ranged from bin 0 to bin 4, the emissions of three buses first decreased and then increased with the growth of VSP.
Technical Paper

Comparison of Particulate Emissions of a Range Extended Electric Vehicle under Different Energy Management Strategies

2019-04-02
2019-01-1189
Range extended electric vehicles achieve significant reductions in fuel consumption by employing as an energy source a small displacement combustion engine that is optimized for high efficiency at one, or a few, operating points. The present paper examines the impact of various energy management strategies on the particulate emissions from the auxiliary power unit (APU) of a range extended electric bus, including optimized auxiliary power unit (APU) on/off strategy, single-point strategy, two-point strategy, power-following strategy and equivalent fuel consumption minimization strategy (ECMS). In addition, this paper also compares the particulate emissions of single energy storage system and composite energy storage system on single-point energy management strategy.
Technical Paper

Effect of Ageing Catalyzed Continuously Regenerating Trap on Particulate Emissions from Urban Diesel Bus Based on On-road Test

2014-10-13
2014-01-2802
Durability and performance evaluation of the ageing catalyzed continuously regenerating trap (CCRT) on solid and volatile particles from diesel bus were studied through a set of transient TSI engine exhaust particle sizer spectrometer based on on-road test. Particle characteristics under stepped steady conditions and during regeneration were discussed in detail. Under idle and stepped steady conditions, total particle number and mass Emission Rate (ER) of each test presented rising trends as speed increase. Total number ERs of all tests showed downtrend as the CCRT aging. The particle number size distributions at different ageing stage showed changing characteristics due to developing filter mechanism. Compared with baseline data, the total number reduction rates at idle condition were incremental, from 91.4% to 98.9% as the CCRT ageing. Percentages of nuclei mode concentrations took higher range from 66.6% to 89.9% compared with the baseline data, 43.2-43.7%.
Technical Paper

Investigation of Injection Strategy on Combustion and Emission Characteristics in a GDI Engine with a 50 MPa Injection System

2024-04-09
2024-01-2381
A DMS500 engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulate emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, secondary injection ratio and secondary injection end time) on particle diameter distribution and particle number density of emission were investigated. The experimental result indicates that the split injection can suppress the knocking tendency at higher engine loads. The combustion is improved, and the fuel consumption is significantly reduced, avoiding the increase in fuel pump energy consumption caused by the 50 MPa fuel injection system, but the delayed injection increases particulate matter emissions.
X