Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

A Novel Diagnostics Tool for Measuring Soot Agglomerates Size Distribution in Used Automotive Lubricant Oils

2014-04-01
2014-01-1479
The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates.
Technical Paper

Evaluating Performance of Uncoated GPF in Real World Driving Using Experimental Results and CFD modelling

2017-09-04
2017-24-0128
Environmental authorities such as EPA, VCA have enforced stringent emissions legislation governing air pollutants released into the atmosphere. Of particular interest is the challenge introduced by the limit on particulate number (PN) counting (#/km) and real driving emissions (RDE) testing; with new emissions legislation being shortly introduced for the gasoline direct injection (GDI) engines, gasoline particulate filters (GPF) are considered the most immediate solution. While engine calibration and testing over the Worldwide harmonized Light vehicles Test Cycle (WLTC) allow for the limits to be met, real driving emission and cold start constitute a real challenge. The present work focuses on an experimental durability study on road under real world driving conditions. Two sets of experiments were carried out. The first study analyzed a gasoline particulate filter (GPF) (2.4 liter, diameter 5.2” round) installed in the underfloor (UF) position and driven up to 200k km.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Morphological Characterisation of Diesel Soot in Oil and the Associated Extraction Dependence

2018-04-03
2018-01-0935
The size and morphology of soot particles and agglomerates extracted from lubricating oil drawn from the sump of a diesel engine have been investigated and compared using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Samples were prepared for electron microscopy imaging by both centrifugation and solvent extraction to investigate the impact of these procedures on the morphological characteristics, such as skeleton length and width and circularity, of the obtained soot. It was shown that centrifugation increases the extent of agglomeration within the sample, with 15% of the agglomerates above 200 nm compared to only 11% in the solvent extracted soot. It was also observed that the width of centrifugation extracted soot was typically 10 nm to 20 nm larger than that of solvent extracted soot, suggesting that centrifugation forces the individual agglomerate chains together.
Technical Paper

Assessing the Accuracy of Soot Nanoparticle Morphology Measurements Using Three-Dimensional Electron Tomography

2019-04-02
2019-01-1188
Morphology plays an important role in determining behaviour and impact of soot nanoparticles, including effect on human health, atmospheric optical properties, contribution to engine wear, and role in marine ecology. However, its nanoscopic size has limited the ability to directly measure useful morphological parameters such as surface area and effective volume. Recently, 3D morphology characterization of soot nanoparticles via electron tomography has been the subject of several introductory studies. So-called ‘3D-TEM’ has been posited as an improvement over traditional 2D-TEM characterization due to the elimination of the error-inducing information gap that exists between 3-dimensional soot structures and 2-dimensional TEM projections. Little follow-up work has been performed due to difficulties with developing methodologies into robust high-throughput techniques.
Technical Paper

Understanding the Challenges Associated with Soot-in-Oil from Diesel Engines: A Review Paper

2021-04-06
2021-01-0568
The major drivers in the development of the latest generation of engines are environmental. For diesel engines, mitigating the effects of soot contamination remains a significant factor in meeting these challenges. There is general consensus of soot impacting oil performance. Considerable efforts have been made towards a greater understanding of soot-lubricant interaction and its effects on engine performance. However, with evolution of engine designs resulting in changes to soot composition/ properties, the mechanisms of soot-lubricant interaction in the internal combustion engine continue to evolve. A variety of mechanisms have been proposed to explain soot-induced wear in engine components. Furthermore, wear is not the only topic among researchers. Studies have shown that soot contributes to oil degradation by increasing its viscosity leading to pumpability and lubricant breakdown issues.
Technical Paper

Morphological Characterization of Gasoline Soot-in-Oil: Development of Semi-Automated 2D-TEM and Comparison with Novel High-Throughput 3D-TEM

2019-09-09
2019-24-0042
Characterization of soot nanoparticle morphology can be used to develop understanding of nanoparticle interaction with engine lubricant oil and its additives. It can be used to help direct modelling of soot-induced thickening, and in a more general sense for combatting reductions in engine efficiency that occur with soot-laden oils. Traditional 2D transmission electron microscopy (TEM) characterization possesses several important shortcomings related to accuracy that have prompted development of an alternative 3D characterization technique utilizing electron tomography, known as 3D-TEM. This work details progress made towards facilitating semi-automated image acquisition and processing for location of structures of interest on the TEM grid. Samples were taken from a four cylinder 1.4 L gasoline turbocharged direct injection (GTDI) engine operated in typically extra-urban driving conditions for 20,284 km, with automatic cylinder deactivation enabled.
Technical Paper

Measurement of Sub-23 nm Particulate Emissions from GDI Engines: A Comparison of Processing Methods

2021-04-06
2021-01-0626
Engine research has increasingly focused on emission of sub 23 nm particulates in recent years. Likewise, current legislative efforts are being made for particulate number (PN) emission limits to include this previously omitted size range. In Europe, PN measurement equipment and procedures for regulatory purposes are defined by the particle measurement programme (PMP). Latest regulation drafts for sub 23 nm measurements specify counting efficiencies with a 65% cut-off size at 10 nm (d65) and a minimum of 90% above 15 nm (d90). Even though alternative instruments, such as differential mobility spectrometers (DMS), are widely used in laboratory environments, the interpretation of their sub 23 nm measurements has not yet been widely discussed. For this study, particulate emissions of a 1.0L gasoline direct injection (GDI) engine have been measured with a DMS system for low to medium speeds with two load steps.
Technical Paper

Modeling of In-Cylinder Soot Particle Size Evolution and Distribution in a Direct Injection Diesel Engine

2015-04-14
2015-01-1075
The focus of this study is to analyse changes in soot particle size along the predicted pathlines as they pass through different in-cylinder combustion histories obtained from Kiva-3v CFD simulation with a series of Matlab routines. 3500 locations representing soot particles were selected inside the cylinder at 8° CA ATDC as soot was formed in high concentration at this CA. The dominant soot particle size was recorded within the size range of 20-50 nm at earlier CA and shifted to 10-20 nm after 20° CA ATDC. Soot particle quantities reduce sharply until 20° CA ATDC after which they remain steady at around 1500 particles. Soot particles inside the bowl region tend to stick to the bowl walls and those remaining in the bowl experience an increase in size. Soot particles that move to the upper bowl and squish regions were observed to experience a decrease in size.
Technical Paper

Investigating the Effect of Carbon Nanoparticles on the Viscosity of Lubricant Oil from Light Duty Automotive Diesel Engines

2014-04-01
2014-01-1481
The influence of size and concentration of carbon nanoparticle on the viscosity of an SAE 5W-30 lubricant oil has been investigated experimentally. Data were collected for oil samples drawn from sump of light duty automotive diesel engines. The average size of soot particles in the used oil samples was in the range of 180-320nm with concentrations ranging from 0 to 2 percentage by weight (wt. %.). A Brookfield DV-II Pro rotary viscometer was used to measure dynamic viscosity at low shear rates and temperatures of 40°C and 90°C. Nanoparticle concentration and particle size distribution were evaluated using Thermo-Gravimetric Analysis (TGA) and Dynamic Light Scattering (DLS) respectively. The viscosity of suspensions of graphite powder in lubricant oil was also investigated for concentrations ranging from 0 to 2 wt. %. The results show that dynamic viscosity increases with increasing soot content and decreasing temperature.
X