Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Reciprocal Measurements of the Vehicle Transfer Function for Road Noise

2015-06-15
2015-01-2241
Road Noise is generated by the change of random displacement input inside the tire contact patch. Since the existing 3 or 6 directional electromagnetic shakers have a flat surface at the tire contact patch, these shakers cannot excite the vehicle in a manner representative of actual on-road road noise input. Therefore, this paper proposes a new experimental method to measure the road noise vehicle transfer function. This method is based on the reciprocity between the tire contact patch and the driver's ear location. The reaction force sensor of the tire contact patch is newly developed for the reciprocal loud speaker excitation at the passenger ear location. In addition, with this equipment, it is possible to extract the dominant structural mode shapes creating high sound pressure in the automotive interior acoustic field. This method is referred to as experimental structure mode participation to the noise of the acoustic field in the vibro-acoustic coupling analysis.
Technical Paper

Road Noise Transfer Path Analysis with Operational Force Estimated from the Responses

2014-06-30
2014-01-2049
This paper presents new technique to estimate the projected operational forces, which is the operational forces with respect to the evaluation location, at the connections of the separated passive substructures with reciprocity. Since the transfer path analysis (TPA) is conducted with respect to the evaluation location, the forces for the substructures are, therefore, also required only to estimate the projected operational forces. In order to estimate the forces, the projected inertance matrix, which is the projection of the inertance matrix onto the subspace with respect to the evaluation location, is estimated without measuring it directly. The acceleration responses at the connections of the passive substructure are measured by the excitation at the evaluation location with the reciprocity. The technique decomposes the acceleration responses into the output and input element vectors on the subspace. With those vectors, the projected inertance matrix is constructed.
X