Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Journal Article

The Application of New Approaches to the Analysis of Deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT)

2017-10-08
2017-01-2293
Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
Technical Paper

The Characterisation of Diesel Internal Injector Deposits by Focused Ion-Beam Scanning Electron Microscopy (FIB-SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy and Raman Spectroscopy.

2015-09-01
2015-01-1826
The effect of legislation in driving towards lower emissions has seen significant changes in injector design, (common- rail) and fuel composition (ULSD). This has led to numerous reports of deposits throughout the vehicle diesel system, filters, tanks, pumps and injectors. In recent examples, deposits internal to the fuel injector on the needle have become prevalent and characterisation of the deposits on the injector needle has become an industry priority. A number of studies have made progress on this but the deposits have proven difficult to fully characterise and often have an ineradicable nature, which makes analysis other than in situ difficult. This paper will describe for the first time the application of a number of surface techniques, in combination which not only provide characterisation data but also the ability to provide cross-sectional lifts out of the sample, which may then be the subject of further analysis.
Technical Paper

Investigations Regarding the Causes of Filter Blocking in Diesel Powertrains

2022-08-30
2022-01-1069
Developed by Rudolph Diesel in the 1890s, the diesel powertrain is used in many applications worldwide. For significant time the engine fuel source for these engines was petroleum diesel, until new legislation regarding emission reduction and smog mitigation saw the introduction of petroleum diesel and biodiesel (Fatty acid methyl ester; FAME) blends in the early 2000s. Since then there have been many instances of filters in diesel powertrains across heavy, light and off-road platforms becoming blocked with unidentified material, for example in the United States, Northern Europe and Scandinavia. Filters are designed to remove contaminants from the fuel system and as the filter becomes plugged it restricts the fuel flow resulting in loss of engine power and eventual breakdown. Understanding The nature of the material responsible for such blockages is clearly important to the industry and has been the subject of many studies.
X