Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Short Term Prediction of a Vehicle's Velocity Trajectory Using ITS

2015-04-14
2015-01-0295
Modern cars feature a variety of different driving assistance systems, which aim to improve driving comfort and safety as well as fuel consumption. Due to the technical advances and the possibility to consider vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, cooperative adaptive cruise control (CACC) strategies have received significant attention from both research and industrial communities. The performance of such systems can be enhanced if the future velocity of the surrounding traffic can be predicted. Generally, human driving behavior is a complex process and influenced by several environmental impacts. In this work a stochastic model of the velocity of a preceding vehicle based on the incorporation of available information sources such as V2I, V2V and radar information is presented. The main influences on the velocity prediction considered in this approach are current and previous velocity measurements and traffic light signals.
Technical Paper

Analysis and Adaptive Estimation of Human Car Following Behavior for Advanced Driver Assistance Systems

2017-03-28
2017-01-0044
In the field of advanced driver assistance systems (ADAS) the capability to accurately estimate and predict the driving behavior of surrounding traffic participants has shown to enable significant improvements of the respective ADAS in terms of economy and comfort. The interaction between the different participants can be an important aspect. One example for this interaction is the car following behavior in dense urban traffic situations. There are different phenomenological or psychological models of human car following which also consider variations between different participants. Unfortunately, these models can seldom be applied for control directly or prediction in vehicle applications. A different way is to follow a control oriented approach by modeling the human as a time delay controller which tracks the inter-vehicle distance. The parameters are typically chosen based on empirical rules and do not consider variations between drivers.
X