Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Short Term Prediction of a Vehicle's Velocity Trajectory Using ITS

2015-04-14
2015-01-0295
Modern cars feature a variety of different driving assistance systems, which aim to improve driving comfort and safety as well as fuel consumption. Due to the technical advances and the possibility to consider vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, cooperative adaptive cruise control (CACC) strategies have received significant attention from both research and industrial communities. The performance of such systems can be enhanced if the future velocity of the surrounding traffic can be predicted. Generally, human driving behavior is a complex process and influenced by several environmental impacts. In this work a stochastic model of the velocity of a preceding vehicle based on the incorporation of available information sources such as V2I, V2V and radar information is presented. The main influences on the velocity prediction considered in this approach are current and previous velocity measurements and traffic light signals.
Technical Paper

Fuel and Immission Potential of Context Aware Engine Control

2013-04-08
2013-01-0306
This paper shows the potential of a multicalibration approach for reducing fuel consumption while keeping pollutant immissions. The paper demonstrates that the current engine control approach with a single fixed calibration involves important fuel penalties in areas with low vehicle densities where local pollution is not an issue, while the NOx emissions in urban areas are usually too high to fulfill air quality standards. The proposed strategy is based on using information about the vehicle location and the NOx concentrations in the ambient to choose a suitable calibration amongst a set of possibilities. To assess the potential of such a strategy experimental tests have been done with a state-of-art turbocharged Diesel engine. First, a design of experiments is used to obtain three different calibrations.
Technical Paper

A Simplified Fuel Efficient Predictive Cruise Control Approach

2015-04-14
2015-01-0296
Adaptive cruise control (ACC) systems allow a safe and reliable driving by adapting the velocity of the vehicle to velocity setpoints and the distance from preceding vehicles. This substantially reduces the effort of the driver especially in heavy traffic conditions. However, standard ACC systems do not necessarily take in account comfort and fuel efficiency. Recently some work has been done of the latter aspect. This paper extends previous works for CI engines by incorporating a prediction model of the surrounding traffic and a simplified control law capable for real time use in experiments. The prediction model itself uses sinusoidal functions as the traffic measurements often show periodic behavior and is adapted in every sample instant with respect to the predecessor's velocity. Furthermore, the controlled vehicle is forced to stay within a specific inter-vehicle distance corridor to avoid collisions and ensure safe driving.
Technical Paper

NO/NO2 Ratio based NH3 Control of a SCR

2014-04-01
2014-01-1565
The emissions of modern Diesel engines, which are known to have various health effects, are beside the drivers torque demands and low fuel consumptions one of the most challenging issues for combustion and after treatment control. To comply with legal requirements, emission control for heavy duty engines is not feasible without additional hardware, usually consisting of a Diesel oxidation catalyst (DOC), a Diesel particulate filter (DPF) and a selective catalytic reduction (SCR) system. In contrast to other NOx reduction systems, e.g. lean NOx traps, the SCR system requires an additional ingredient, namely ammonia (NH3), to reduce the NOx emissions to non harmful components. Consequently, the correct amount of NH3 dosing in the SCR catalyst is one of the critical components to reach high conversion rates and avoid ammonia slip.
X