Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Hybrid Automata Modeling of SI Gasoline Engines towards State Estimation for Fault Diagnosis

2011-12-15
2011-01-2434
Mean Value Engine Models, commonly used for model based fault diagnosis of SI engines, fail to capture the within-cycle dynamics of engines, often resulting in reduced fault sensitivity. This paper presents a new Hybrid Automata based modeling approach for characterizing the within-cycle dynamics of the thermo-fluidic processes in a Spark Ignition Gasoline Engine, targeted for use in model based fault diagnosis. Further, using a hybrid version of the Extended Kalman Filter (EKF), the states from the nonlinear hybrid automata based dynamic model are estimated and their results validated w.r.t standard industrial simulation software, AMESim. It is observed that due to the switching of within cycle engine dynamics, causing mode change, there is a corresponding change in model's structure which in turn can cause change in system's observability.
Journal Article

Diagnosis of within Cylinder Faults Using Instantaneous Mode Based Engine Model

2016-03-14
2016-01-9151
Model based approaches for engine fault diagnosis mostly address the faults external to cylinder since they predominantly use simplified averaged models which do not capture within cycle dynamics. Hence, by using an instantaneous engine model which distinctly characterizes the cylinder’s modes, the events occurring within the cycle can be captured. The events happening across various modes and the engine subsystems can be due to normal operation or faults whose symptoms can be seen as features. In this work, which involves detection and classification of faults occurring in cylinders, is carried out in simulation environment, where, a Kalman filter for state estimation incorporating a nominal instantaneous mode based engine model is considered. Using this estimator as base, faults occurring repetitively (every cycle) are addressed whose features are seen across relevant modes of a cycle.
X