Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Turbocharging Concepts for Downsized DI Gasoline Engines

2004-03-08
2004-01-0036
Reducing engine swept volume (so-called ‘downsizing’) offers the potential to meet future tighter CAFÉ standards and reduced CO2 vehicle emissions in Europe. In downsizing the gasoline engine, a key challenge is controlling octane requirement without sacrificing fuel economy. The authors have investigated five alternative approaches on a turbocharged DI gasoline engine: Conventional stoichiometric operation, with reduced compression ratio (CR) Lean Boost DI (LBDI) with lean operation at full-load to control octane requirement while maintaining a high CR EGR Boost with cooled EGR dilution rather than excess air to control octane requirement Miller cycle concept, where valve-timing strategies are employed to reduce the effective compression ratio at high load Dual injection strategies to control octane requirement Each approach has been investigated using engine performance and vehicle simulation codes.
Technical Paper

Development of a Two-Stroke/Four-Stroke Switching Gasoline Engine - The 2/4SIGHT Concept

2005-04-11
2005-01-1137
The pursuit of flexibility is a recurring theme in engine design and development. Engines that are able to switch between the two-stroke operating cycle and four-stroke operation promise a great leap in flexibility. Such 2S-4S engines could then continuously select the optimum operating mode - including HCCI/CAI combustion - for fuel efficiency, emissions or specific output. With recent developments in valvetrain technology, advanced boosting devices, direct fuel injection and engine control, the 2S-4S engine is an increasingly real prospect. The authors have undertaken a comprehensive feasibility study for 2S-4S gasoline engines. This study has encompassed concept and detailed design, design analysis, one-dimensional gas dynamics simulation, three-dimensional computational fluid dynamics, and vehicle simulation. The resulting 2/4SIGHT concept engine is a 1.04 l in-line three-cylinder engine producing 230 Nm and 85 kW.
Technical Paper

Development of a Pre-Chamber Combustion System for the Magma xEV Engine

2022-03-29
2022-01-0422
The electrification of powertrains provides a critical opportunity to change the way that engines are designed and developed, allowing their efficiency to be increased and their cost reduced. This paper draws on ongoing Ricardo projects in the field of dedicated hybrid engines (DHEs). The Magma xEV combustion concept employs very high compression ratio, long stroke architecture, and advanced ignition and knock mitigation technologies, for DHEs requiring the highest efficiency. In the latest research project a pre-chamber combustion system (with both active and passive operation) has been applied to the Magma xEV engine, in order to enable the highest levels of charge dilution and further increase brake thermal efficiency. The research focussed on benefits of pre-chamber ignition as compared to conventional spark ignition and corona discharge ignition. The comparison of charge dilution using excess air (lean operation) and exhaust gas recirculation are presented.
Technical Paper

An Integrated Powertrain (IPT) Model - Stage One

2000-03-06
2000-01-0864
The need to reduce fuel consumption and CO2 emissions while meeting future emission legislation has lead to the investigation of alternative engines, transmissions, aftertreatment and control strategies. The evaluation of alternative configurations at the concept stage requires vehicle drive cycle simulation tools, which include the following features: Fast run-time Alternative transmission models Cold start effects on fuel consumption and emissions modeled After-treatment models. This paper describes the development of a MATLAB/SIMULINKTM - based drive cycle simulation model meeting these requirements. The paper includes validation data comparing fuel consumption, engine-out and tailpipe emissions for a direct injection gasoline vehicle with a stoichiometric/lean switching strategy and lean NOx catalyst.
Technical Paper

A Gasoline Engine Concept for Improved Fuel Economy -The Lean Boost System

2000-10-16
2000-01-2902
This paper describes the Lean Boost System, a gasoline engine concept for improved fuel economy. The system combines direct injection, lean operation and pressure charging, and allows significant reduction in swept volume, or ‘downsizing’. Engine tests have been undertaken which demonstrate the validity of the combustion concept. The strategy a typical manufacturer might adopt in order to meet future European requirements for CO2 emissions is proposed. Vehicle simulation results for typical North American and European vehicles are presented. Using the exhaust gas emission levels from engine tests and drive cycle simulation, aftertreatment requirements and configurations are considered.
X