Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Load Estimation of an Open-Link Locomotion Module for Robotic and Commercial Multi-Wheel Applications

2013-09-24
2013-01-2358
An open-link locomotion module, comprising a driving wheel with an electric motor, a system of electro-hydraulic suspension, and an electro-hydraulic power steering system, is presented in this paper as the basis for the modular design of unmanned (robotic) ground vehicles. The open-link-type configuration allows the module to be functionally integrated and engineered with a system of similar modules and thus virtually allows to compile vehicles with any required number of driving wheels. The overall dimensions and carrying capacity of the tire used in the module, as well as technical characteristics of the suspension and power steering systems make possible to employ the module for commercial ground vehicle applications. This paper considers technical issues related to designing the locomotion module.
Technical Paper

Modern and Future Motor Vehicles as Modular-Based Complexes of Mechatronic Systems

2012-04-16
2012-01-1163
The article presents results of comprehensive theoretical and experimental studies aimed at creation of traction-and-transport vehicles (TTVs) - trucks and tractors of the future, which meet the modern requirements for their active and environmental safety. The concept is based on the original complex mathematical model (CMM), which allows simulating various interaction schemes of all TTV systems, including those accounting for the contact (tribological) interaction of the wheel with the rolling surface. The CMM was used to study the work of all the subsystems of TTVs equipped with electric transmission, all-wheel steering and electro-hydraulic servo system of wheel turning, as well as with the wheel-springing system and the onboard information-and-control system. Besides, the CMM and its individual units were used as simulators for programming the functionality algorithms of all these subsystems and their relationships with each other.
Technical Paper

Traction Electric Drive for Wheels of Commercial Heavy-Duty Automobile

2013-11-27
2013-01-2867
The aim of this paper is to present the main principles of building the traction electric drive (TED) of the wheels of a heavy-duty road commercial vehicle.A high importance is given to the complex nature of designing and summing up the practical experience of making particular designs of the traction electric drive; as well as to the involved terms and definitions. The design of the AC TED with asynchronous motors and an AC generator looks most promising and having the best price/quality ratio.
Technical Paper

Automated System to Control Steering and Wheel Springing Parameters in Vehicle Locomotion Module

2015-01-14
2015-26-0085
The modular designing principle is generally recognized in the automotive industry. However, the issue of building a wheel open-link locomotion module (OLLM) as a combination of steering (wheel turning), springing, traction drive and braking systems is not properly developed yet. An automated control system (ACS) is needed to able to unite and coordinate all the vehicle systems intended to manage the wheel. The automated control system intended to manage the steering and wheel springing parameters is a combination of an information and power channels, through which the wheel is electro-hydraulically driven, and the steering, springing and braking systems are controlled. The number of such channels in a wheeled mover of the vehicle or mobile robot is defined by the wheel type (driving, driven, steered or non-steered wheel). The plurality of such channels forms a complex of automated control systems of the wheeled mover.
Technical Paper

Algorithmic Maintenance of a Complex of Mechatronic Modules and Running Gear of an Automobile

2015-09-29
2015-01-2761
An electro-hydraulic servo system makes the basis for a mechatronic locomotion module (LM) and for a complex comprising an LM and an undercarriage of a vehicle. The servo system of the wheel module/LM complex is a combination of the information and power channels of the electro-hydraulic wheel drive within the steering system. A combination of the servo systems makes up a complex of servo systems of the steering system of the multi axis wheel mover of the vehicle. Theoretical and experimental studies of the functioning all-wheel steering were aimed on substantiation the rational algorithmic maintenance of the automatic control system. The results of the study allowed formulating the basic principles of designing and calculating the functionality algorithms for the steering system of the complex of mechatronic modules of the multi-axis vehicle.
Book

Heavy-Duty Wheeled Vehicles: Design, Theory, Calculations

2014-01-27
Heavy-duty wheeled vehicles (HDWVs) are all-wheel-drive vehicles that carry 25 tons or more and have three or more axles. They transport heavy, bulky cargo such as raw minerals, timber, construction materials, pre-fabricated modules, weapons, combat vehicles, and more. HDWVs are used in a variety of industries (mining, logging, construction, energy) and are critical to a country’s economy and defense. These vehicles have unique development requirements due to their high loads, huge dimensions, and specific operating conditions. Hauling efficiencies can be improved by increasing vehicle load capacity; however capacities are influenced by legislation, road limits, and design. Designing HDWVs differs from other multi-purpose all-wheel-drive vehicles. The chassis must be custom-designed to suit the customer’s particular purpose. The number of axles is another variable, as well as which ones are driving and which are driven. Tires are also customizable.
X