Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Energy Wall Losses Estimation of a Gasoline Engine Using a Sliding Mode Observer

2012-04-16
2012-01-0674
This paper describes an innovative method to estimate the wall losses during the compression and combustion strokes of a gasoline engine using the cylinder pressure measurement. The estimation during the compression and combustion strokes allows to better represent the system during the combustion. A sliding mode observer is derived from a validated 0-D physical engine model and its convergence and stability are proved. The observer is validated using two different engine models: a one zone engine model and a two zones engine model with flame wall interaction. A good agreement between the estimation results and the model reference is observed, showing the interest of using closed loop strategies to estimate the wall losses in a SI engine.
Technical Paper

Zero-Dimensional Spark Ignition Combustion Modeling - A Comparison of Different Approaches

2013-09-08
2013-24-0022
Internal combustion engines development with increased complexity due to CO2 reduction and emissions regulation, while reducing costs and duration of development projects, makes numerical simulation essential. 1D engine simulation software response for the gas exchange process is sufficiently accurate and quick. However, combustion simulation by Wiebe function is poorly predictive. The objective of this paper is to compare different approaches for 0D Spark Ignition (SI) modeling. Versions of Eddy Burn Up, Fractal and Flame Surface Density (FSD) models have been coded into GT-POWER platform, which connects thermodynamics, gas exchange and combustion sub-models. An initial flame kernel is imposed and then, the flame front propagates spherically in the combustion chamber. Flame surface is tabulated as a function of piston position and flame radius. The modeling of key features of SI combustion such as laminar flame speed and thickness and turbulence was common.
X