Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Further Development of the PNCA: New Panel Noise Contribution Reference-Related (PNCAR)

2012-06-13
2012-01-1539
The Panel Noise Contribution Analysis (PNCA) is a well-known methodology for an airborne Transfer Path Analysis (TPA) in car interior. Pressure contribution from the individual panels at a reference point can be very accurately calculated. Acoustic Trim package treatment can therefore be optimized in terms of frequency and panel area which saves money and time. The method uses only one type of sensors so called particle velocity probes for measuring source strength as well as transfer function (with a reciprocal measurement). Traditionally the PNCA makes use of a big amount of probes at fixed points (about 50) hence non-stationary conditions can be measured as well. Typically the measurement is performed in 3 sessions resulting in 150 individual panels. Because of the low spatial resolution the method can only be used at mid-low frequency range.
Technical Paper

Integration of an End-of-Line System for Vibro-Acoustic Characterization and Fault Detection of Automotive Components Based on Particle Velocity Measurements

2017-06-05
2017-01-1761
The automotive industry is currently increasing the noise and vibration requirements of vehicle components. A detailed vibro-acoustic assessment of the supplied element is commonly enforced by most vehicle manufacturers. Traditional End-Of-Line (EOL) solutions often encounter difficulties adapting from controlled environments to industrial production lines due the presence of high levels of noise and vibrations generated by the surrounding machinery. In contrast, particle velocity measurements performed near a rigid radiating surface are less affected by background noise and they can potentially be used to address noise problems even in such conditions. The vector nature of particle velocity, an intrinsic dependency upon surface displacement and sensor directivity are the main advantages over conventional solutions. As a result, quantitative measurements describing the vibro-acoustic behavior of a device can be performed at the final stage of the manufacturing process.
Technical Paper

Further Development of Velocity-based Airborne TPA: Scan & Paint TPA as a Fast Tool for Sound Source Ranking

2012-06-13
2012-01-1544
The interior noise of a car is a general quality index for many OEM manufacturers. A reliable method for sound source ranking is often required in order to improve the acoustic performance. The final goal is to reduce the noise at some positions inside the car with the minimum impact on costs and weight. Although different methodologies for sound source localization (like beamforming or p-p sound intensity) are available on the market, those pressure-based measurement methods are not very suitable for such a complex environment. Apart from scientific considerations any methodology should be also “friendly” in term of cost, time and background knowledge required for post-processing. In this paper a novel approach for sound source localization is studied based on the direct measurement of the acoustic particle velocity distribution close to the surface. An airborne transfer path analysis is then performed to rank the sound pressure contribution from each sound source.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
X