Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Acoustic Model Reduction for the Design of Acoustic Treatments

2021-08-31
2021-01-1057
Due to constant evolution in both noise regulations and noise comfort standards, noise reduction inside the vehicle remains one of the main issues faced today by the automotive industry. One of the most efficient methods for noise reduction is the introduction of acoustic treatments, made of multilayered trimmed panels. Constraints on these components, such as weight, packaging space and overall sound quality as well as the amount of possible material and geometrical combinations, have led automotive OEMs to use innovative methods, such as numerical acoustic simulation, so as to evaluate noise transmission in a fast and cost-effective way. While the computational cost for performing such analyses is insignificant for a limited number of configurations, the evaluation of multiple design parameter combinations early in the design stage can lead to non-viable computation times in an industrial context.
Technical Paper

Machine-Learning-Based Modelling of Electric Powertrain Noise Control Treatments

2023-05-08
2023-01-1132
Encapsulation of electric powertrains is a booming topic with the electrification of vehicles. It is an efficient way of reducing noise radiated by the machines even in later stages of the design and without altering the electromagnetic performance. However, it is still difficult to define the best possible treatment. The locations, thicknesses and material compositions need to be optimized within given constraints to reach maximum noise reduction while keeping added mass and cost at minimum. In this paper, a methodology to design the encapsulation based on numerical vibro-acoustic simulations is presented. In a first step, the covered areas are identified through post-processing of a finite element acoustic radiation model of the bare powertrain. In a second step, a design of experiment is performed to assess the influence of various cover parameters on the acoustic radiation results.
X