Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
Journal Article

Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System

2013-04-08
2013-01-1677
The limited availability of fossil fuels and the increasing environmental pollution will lead to an increased demand for sustainable biofuels. The production of bio-based diesel fuels from vegetable oils is commonly accomplished using a process known as Trans-esterification. The product of Transesterification is Fatty Acid Methyl Ester (FAME), commonly known as Biodiesel. An alternative process is Hydro-treatment of seed oils or animal waste fats to produce highly paraffinic renewable diesel fuel called Hydrogenated Vegetable Oil (HVO). Detailed investigations were carried out by the “Department of Advanced Diesel Engine Development” at FEV GmbH Aachen (Germany), to explore the potential of this biofuel compound as a candidate for future compression ignition engines.
Journal Article

Advanced Fuel Formulation Approach using Blends of Paraffinic and Oxygenated Biofuels: Analysis of Emission Reduction Potential in a High Efficiency Diesel Combustion System

2016-10-17
2016-01-2179
This work is a continuation of earlier results presented by the authors. In the current investigations the biofuels hydrogenated vegetable oil (HVO) and 1-octanol are investigated as pure components and compared to EN 590 Diesel. In a final step both biofuels are blended together in an appropriate ratio to tailor the fuels properties in order to obtain an optimal fuel for a clean combustion. The results of pure HVO indicate a significant reduction in CO-, HC- and combustion noise emissions at constant NOX levels. With regard to soot emissions, at higher part loads, the aromatic free, paraffinic composition of HVO showed a significant reduction compared to EN 590 petroleum Diesel fuel. But at lower loads the high cetane number leads to shorter ignition delays and therefore, ignition under richer conditions.
Journal Article

Utilization of HVO Fuel Properties in a High Efficiency Combustion System: Part 2: Relationship of Soot Characteristics with its Oxidation Behavior in DPF

2014-10-13
2014-01-2846
The present work is a continuation of the earlier published results by authors on the investigation of Hydrogenated Vegetable Oil (HVO) on a High Efficiency Diesel Combustion System (SAE Int. J. Fuels Lubr. Paper No. 2013-01-1677 and JSAE Paper No. 283-20145128). In order to further validate and interpret the previously published results of soot microstructure and its consequences on oxidation behavior, the test program was extended to analyze the impact of soot composition, optical properties, and physical properties such as size, concentration etc. on the oxidation behavior. The experiments were performed with pure HVO as well as with petroleum based diesel and today's biofuel (i.e. FAME) as baseline fuels. The soot samples for the different analyses were collected under constant engine operating conditions at indicated raw NOx emissions of Euro 6 level using closed loop combustion control methodology.
X