Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Virtual GDI Engine as a Tool for Model-Based Calibration

2012-09-10
2012-01-1679
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
Technical Paper

Medium Pressure Injection System for Small Diesel Engine Application: Numerical Simulation and Experimental Results

2014-11-11
2014-32-0134
Diesel engine technology is continuously focused on higher performances and lower emission levels. Reduced costs and lower fuel consumption are key factors in engine development too, in particular for small diesel engine, both for on-road and non-road application. In order to fulfill emission legislation requirements, improve engine performance and reduce fuel consumption, nowadays the common rail injection system with electronic actuation is widely used in diesel engines. Nevertheless, conventional common rail system cost is quite high, mainly due to the complex indirect actuation of the injector, and the injector backflow leads to inefficiencies in the injection system. In this work an analysis of a medium pressure injection system for small diesel engines is presented, focusing on the achievable engine performances and emissions.
X