Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Sensitivity Analysis of Full Scale Catalyst Response under Dynamic Testing Conditions - A Method to Develop Further Understanding of Catalytic Converter Behavior Pt.1

2016-04-05
2016-01-0979
Catalyst aging is presently one of the most important aspects in aftertreatment development, with legislation stating that these systems must be able to meet the relevant emissions legislation up to a specified mileage on the vehicle, typically 150,000 miles. The current industry approach for controlling aging cycles is based solely on the detailed specification of lambda (air-fuel mixture concentration ratio), flow rate and temperature without any limitations on gas mixture. This is purely based upon the experience of engine-based aging and does not take into account any variation due to different engine operation. Although accurate for comparative testing on the same engine/engine type, inconsistencies can be observed across different aging methods, engine types and engine operators largely driven by the capability of the technology used.
Technical Paper

Limitations of Global Kinetic Parameters for Automotive Application

2012-09-10
2012-01-1638
With emission legislation becoming ever more stringent, automotive companies are forced to invest heavily into solutions to meet the targets set. To date the most effective way of treating emissions is through the use of catalytic converters. Current testing methods of catalytic converters whether being tested on a vehicle or in a lab reactor can be expensive and offer little information about what is occurring within the catalyst. It is for this reason and the increased price of precious metal that kinetic modeling has become a popular alternative to experimental testing. Many kinetic models and kinetic parameters have appeared in literature in recent years, a comparison of these kinetic parameters for the global reaction of CO oxidation is presented.
Technical Paper

A Study of the Effect of Light-Off Temperatures and Light-Off Curve Shape on the Cumulative Emissions Performance of 3-Way Catalytic Converters

2021-04-06
2021-01-0594
The results of this paper will show the reader how to quantify a minimum light-off temperature to meet the required emissions standards with the use of a 3-way catalytic converter. The method can be applied to both motorcycle and larger automotive catalysts to help meet their respective emissions standards (Euro 5/Euro 7). The ability to predict a light-off temperature for any catalyst at the beginning of the project saves both time and resource. With an emphasis on how the shape of the light-off curve affects the cumulative tailpipe emissions and how shape of the light-off curves change with the ageing process. Changes in the light-off curves will be reviewed to understand how the chemical reactions and pore diffusion mechanisms within the catalyst deplete to negatively affect performance over its life time.
Technical Paper

Modelling the Variation in Precious Metal Dispersion in a Three Way Catalytic Converter after Aging

2018-04-03
2018-01-0959
With emission legislations becoming ever more stringent, there is an increased pressure on after-treatment systems and more specifically three-way catalysts. With recent developments in emission legislations, there is a requirement for more complex after-treatment systems and understanding of the aging process. Whilst the body of understanding on catalyst deactivation and, in particular, catalyst aging is growing, there are still significant gaps in understanding, particularly how real world variations in temperature, flow rate and gas concentrations affect catalyst behavior. Under normal driving conditions, the catalyst can experience varying oxygen concentrations, such as under heavy acceleration or cruising down a hill will show a variation in oxygen from the engine emissions. The effect that varying oxygen concentrations has on the rate of aging is not fully understood and hence the total deactivation and conversion efficiencies are not known throughout the catalyst lifetime.
X