Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Road Simulation Bench as a Tool to Reproduce the Real Life Ageing of the Exhaust System A Case Study: The Flexible Ageing

2008-04-14
2008-01-0705
Through a case history, we report a procedure to age exhaust flexibles on a Road Simulation Bench, in order to reproduce the acoustic failures occurred during vehicle ageing. The bench ageing has been the key instrument to solve an acoustic problem (a ring) observed on the vehicle after ageing. It is shown that it was mainly due to the partial loosening of the external outer braid (which caused the flapping of the outer braid against the bellows).
Journal Article

Reduction of Exhaust Noise by Means of Thermal Acoustics

2012-04-16
2012-01-0804
It is well known that mufflers attenuate the engine noise essentially through dissipative and reflective effects. There is however another alternative technique for noise attenuation that has not been deeply explored, i.e. thermal acoustics. In fact the temperature of the gas influences the acoustic behaviour of the exhaust system; reducing the exhaust gas temperature, the sound pressure of the acoustic waves is reduced. This phenomenum could be used to improve the sound attenuation. We propose an experimental study of this phenomenum and of how it could be used to reduce the exhaust noise. We measured that, using in underfloor position passive heat exchangers like corrugated pipes, the exhaust gas quickly exchanges heat with the external environment and arrives to the rear muffler significantly colder. We observe about 2 dB decrease of the OA dB value when the gas temperature decreases of about 100°C.
Technical Paper

1-D Modeling and Room Temperature Experimental Measurements of the Exhaust System Backpressure: Limits and Advantages in the Prediction of Backpressure

2008-04-14
2008-01-0676
It is well known that backpressure is one of the important parameters to be minimised during the exhaust system development. Unfortunately, during the first phases of an engineering process of a new engine, engine prototypes are not available yet. Due to this the exhaust system backpressure is generally evaluated using simulation software, and/or measuring the backpressure by a flow rig test at room temperature. Goal of this paper is to compare exhaust backpressure results obtained respectively: i) at the room temperature flow rig; ii) at the engine dyno bench; iii) by simulation with one of the most common 1D fluidodynamics simulation tool (Gt-Power). A correlation of the three different techniques is presented.
X