Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Comprehensive Optimization of Dynamics Performance and Energy Consumption for an Electric Vehicle via Coordinated Control of SBW and FIWMA

2016-04-05
2016-01-0457
This paper presents a coordinated controller for comprehensive optimization of vehicle dynamics performance and energy consumption for a full drive-by-wire electric vehicle, which is driven by a four in-wheel motor actuated (FIWMA) system and steered by a steer-by-wire (SBW) system. In order to coordinate the FIWMA and SBW systems, the mechanisms influencing the vehicle dynamics control performance and the energy consumption of the two systems are first derived. Second, the controllers for each subsystem are developed. For the SBW system, a triple-step control technique is implemented to decouple the yaw rate and sideslip angle controls. The FIWMA system controller is designed with a hierarchical control scheme, which is able not only to satisfy the yaw rate and sideslip angle tracking demands, but also to deal with actuation redundancy and constraints.
Technical Paper

A Hybrid Approach Combining LSTM Networks and Kinematic Rules for Vehicle Velocity Estimation

2022-03-29
2022-01-0157
Vehicle speeds, in both longitudinal and lateral directions, are vital signals for vehicular electronic control systems. In in-wheel motor-driven vehicles (IMDVs), because no slave wheel can be used for reference, it becomes more challenging to conduct velocity estimation, especially when all wheels turn to slip. To reduce the dependence of speed estimation on physical plant parameters and environment perception, in this work, we develop a new method that estimates the longitudinal and lateral velocities of an IMDV by using the kinematic model with the Kalman Filter. For longitudinal velocity measurement, we propose a hybrid approach combining Long-Short Term Memory (LSTM) networks and the kinematic rules to obtain a reliable estimation. More specifically, when at least one effective driven wheel is available, that is, no-slip happening, the longitudinal velocity can be derived using the average of those effective wheels' rotational speeds.
X