Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Active Brake Judder Compensation Using an Electro-Hydraulic Brake System

2015-04-14
2015-01-0619
Geometric imperfections on brake rotor surface are well-known for causing periodic variations in brake torque during braking. This leads to brake judder, where vibrations are felt in the brake pedal, vehicle floor and/or steering wheel. Existing solutions to address judder often involve multiple phases of component design, extensive testing and improvement of manufacturing procedures, leading to the increase in development cost. To address this issue, active brake torque variation (BTV) compensation has been proposed for an electromechanical brake (EMB). The proposed compensator takes advantage of the EMB's powerful actuator, reasonably rigid transmission unit and high bandwidth tracking performance in achieving judder reduction.
Journal Article

Estimation of Brake Friction Coefficient for Blending Function of Base Braking Control

2017-09-17
2017-01-2520
The brake architecture of hybrid and full electric vehicle includes the distinctive function of brake blending. Known approaches draw upon the maximum energy recuperation strategy and neglect the operation mode of friction brakes. Within this framework, an efficient control of the blending functions is demanded to compensate external disturbances induced by unpredictable variations of the pad disc friction coefficient. In addition, the control demand distribution between the conventional frictional brake system and the electric motors can incur failures that compromise the frictional braking performance and safety. However, deviation of friction coefficient value given in controller from actual one can induce undesirable deterioration of brake control functions.
Technical Paper

Combined Testing Technique: Development of Friction Brake System for Electric Vehicle

2014-09-28
2014-01-2529
The presented research discusses the experimental procedure developed for testing of friction brake systems installed on the modern electric vehicles. Approach of combined experimental technique utilizing hardware-in-the-loop platform and brake dynamometer is introduced. As the case study, an influence of brake lining coefficient of friction fluctuations on the anti-lock brake system (ABS) performance is investigated. The ABS algorithm is represented by the direct slip control aimed to the precise tracking of reference slip ratio by means of electric and friction brake system. Vehicle prototype is represented by RWD electric vehicle with in-wheel motors. Results, representing the investigated phenomenon, are derived using the developed combined test bench. The achieved results give a basis for further extension of standard brake testing procedures.
X