Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

2013-04-08
2013-01-0274
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials. Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock. On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
X