Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Downsized SI Engine Control: A Torque-based Design from Simulation to Vehicle

2007-04-16
2007-01-1506
This paper presents the development of torque-based engine control strategies for a downsized SI engine, from simulation design to final validation on a demonstration car. One main issue to reach performance, fuel consumption and pollutant emission demands is in-cylinder mass observation and control. A simulation-based approach is first presented to design accurate observers from a reference simulator. In this study, a multivariable and non-linear control has been developed and focused on in-cylinder mass trajectories. It has been tested on a real time Software-In-the-Loop platform before a complete validation and calibration on the test bed. Finally, the complete torque-based engine control has been successfully integrated on the vehicle.
Technical Paper

Powertrain Simulation Tools and Application to the Development of a SI Engine Concept Car

2008-04-14
2008-01-0356
The powertrain simulation tools are nowadays an efficient support to optimize cost and duration of the whole engine technological developments. They can deliver optimized simulator versions for various targets such as system understanding, design investigation, non-measurable value access or virtual bench use for control and calibration. Under the condition of an accurate modelling and simulation know-how to take into account the simulator using constraints, the simulation can become an undisputable support for powertrain design as the test bed already is. The goal of this paper is to present the large range of the powertrain simulation capabilities for the specific application of a downsized turbocharged GDI engine with twin VVT embedded in a concept car. The modelling framework is first presented and different items are laid-out. A first part is dedicated to the engine air path and in particular to the modelling of gas exchange phenomena such as back-flow.
Technical Paper

Modelling Turbocharged Spark-Ignition Engines: Towards Predictive Real Time Simulators

2009-04-20
2009-01-0675
Due to increasingly stringent regulations, reduction of pollutant emissions and consumption are currently two major goals of the car industry. One way to reach these objectives is to enhance the management of the engine in order to optimize the whole combustion process. This requires the development of complex control strategies for the air and the fuel paths, and for the combustion process. In this context, engine 0D modelling emerges as a pertinent tool for investigating and validating such strategies. Indeed, it represents a useful complement to test bench campaigns, on the condition that these 0D models are accurate enough and manage to run quite fast, eventually in real time. This paper presents the different steps of the design of a high frequency 0D simulator of a downsized turbocharged Port Fuel Injector (PFI) engine, compatible with real time constraints.
Technical Paper

A Phenomenological Combustion Model Including In-Cylinder Pollutants To Support Engine Control Optimisation Under Transient Conditions

2011-08-30
2011-01-1837
Regulations in terms of pollutant emissions are becoming more and more constraining. The car manufacturers need to adopt a global optimisation approach of engine and exhaust after-treatment systems. An engine architecture definition coupled to an adapted control strategy seem to be an ideal way to address this issue. The problem is particularly complex, considering the trade off between the drivability which must be maintained, the reduction of the in-cylinder pollutant emissions, the reduction of the fuel consumption and the optimisation of the operating conditions to reach high conversion efficiencies via exhaust gas after-treatment systems. Sophisticated control strategies and models can only be developed with a complete understanding of the physical phenomena occurring in the combustion chamber, thanks to experimental measurements and engine system simulations.
X