Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Journal Article

Modeling Fresh Air Charge and Residual Gas Fraction on a Dual Independent Variable Valve Timing SI Engine

2008-04-14
2008-01-0983
We propose a model of in-cylinder air mass and residual gas fraction of a turbocharged SI engine with Variable Valve Timing (VVT) actuators. VVT devices are used to produce internal exhaust gas recirculation at part load, providing beneficial effects in terms of fuel consumption and pollutant emissions. At full load, VVT actuators permit to push back knock limit by scavenging fresh air to the exhaust pipes. Modeling in-cylinder composition is an essential task for control purpose. Actually, VVT actuators affect in-cylinder fresh air charge. This has an impact on engine torque output (leading to driveability problems), and on Fuel/Air Ratio (leading to pollution peaks). In this paper, we present a model of in-cylinder air mass and residual gas fraction using only commercial-line sensors (engine speed, intake manifold pressure and VVT actuators positions). It is designed for real-time control purpose. The model does not necessitate a lot of calibration time.
Technical Paper

A Phenomenological Combustion Model Including In-Cylinder Pollutants To Support Engine Control Optimisation Under Transient Conditions

2011-08-30
2011-01-1837
Regulations in terms of pollutant emissions are becoming more and more constraining. The car manufacturers need to adopt a global optimisation approach of engine and exhaust after-treatment systems. An engine architecture definition coupled to an adapted control strategy seem to be an ideal way to address this issue. The problem is particularly complex, considering the trade off between the drivability which must be maintained, the reduction of the in-cylinder pollutant emissions, the reduction of the fuel consumption and the optimisation of the operating conditions to reach high conversion efficiencies via exhaust gas after-treatment systems. Sophisticated control strategies and models can only be developed with a complete understanding of the physical phenomena occurring in the combustion chamber, thanks to experimental measurements and engine system simulations.
Technical Paper

Sensitivity Study on the Design Methodology of an Electric Vehicle

2012-04-16
2012-01-0820
Reducing greenhouse gas emissions to alleviate global warming will certainly be one of the major challenges of the 21st century. Transportation plays a very important part in this, which is why the European Commission and the European manufacturers have found an agreement to limit the average emissions of vehicles to 130 gCO₂/km in 2012 and 95 gCO₂/km in 2020. Cutting vehicles' consumption of hydrocarbons is becoming a critical issue to reach these ambitious targets. Electric vehicles, characterized by zero direct CO₂ emissions, seem to be a relevant way to achieve these CO₂ emissions. Despite their capabilities to emit no local pollution and to operate silently, electric vehicles have also one important drawback: the limited autonomy offered to the customer. As for conventional vehicles, energy consumption for electric vehicles is very dependant of driving conditions, such as driving cycles and ambient temperature operating conditions for instance.
X