Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigating Pre-Mixed Charge Compression Ignition Combustion in a High Compression Ratio Engine

2018-04-03
2018-01-0900
Utilizing a higher compression ratio in a Compression Ignition (CI) engine grants an obvious advantage of improved thermal efficiency. However, the resulting combustion temperatures promote dissociation ensuing in increased nitrogen oxide (NOx) emissions. Unfortunately, due to the inherent properties of CI combustion, it is difficult to achieve simultaneous reduction of NOx and particulate matter (PM) through conventional combustion methods. Taking a different route though accomplishing Homogeneous Charge Compression Ignition (HCCI) in CI engines will largely eliminate NOx and PM; however, combustion can result in a significant increase in hydrocarbon (HC) and carbon monoxide (CO) emissions due to the low volatility of diesel fuel. Hence, this work attempts another avenue of Low Temperature Combustion (LTC) by employing Pre-mixed Charge Compression Ignition (PCI) combustion on a comparatively higher compression ratio (21.2) single cylinder CI engine.
Technical Paper

Efficiency and Emissions Mapping for a Single-Cylinder, Direct Injected Compression Ignition Engine

2014-04-01
2014-01-1242
A timing sweep to correlate the location of Maximum Brake Torque (MBT) was completed on a single-cylinder, direct injected compression ignition engine that was recently upgraded to a high-pressure rail injection system for better engine control. This sweep included emissions monitoring for carbon dioxide, carbon monoxide, particulate matter, hydrocarbons, and oxides of nitrogen for the calibration of a heat release model, as well as the opportunity to relate MBT timing to brake-specific emissions production. The result of this timing sweep was a relatively linear correlation between injection delay and peak pressure timing. In addition, a number of other MBT timing methodologies were tested indicating their applicability for immediate feedback upon engine testing, particularly mass fraction burned correlations. Emissions were either strongly correlated to MBT timing (with emissions being minimized in the vicinity of MBT), or were completely independent of MBT.
X