Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dry Sliding Wear Behavior of Al-B4C Particulate Reinforced Composites Produced by Powder Metallurgy Method

2013-04-08
2013-01-0379
Metal Matrix Composites (MMCs) have been widely investigated and applied due to their advantages of improved strength, stiffness and increased wear resistance over the unreinforced alloys in automobile industries. MMCs are the type of materials which can be designed to combine the strength, ductility and formability of metallic alloys with the non-metallic compounds such as silicon carbide, aluminum oxide and boron carbide. This paper investigates dry sliding wear behavior of aluminum (Al) matrix (MMCs) reinforced with different amounts (3, 6, and 9 wt%) of B₄Cp processed using pressureless sintering at 550°C under argon atmosphere. Wear tests were performed on a pin-on-disk configuration against SAE 1040 steel counter body under constant load and sliding speed. The relationship between wear resistance and wear mechanism were investigated. The influence of wetting characteristics of B₄Cp by the matrix was also evaluated.
Technical Paper

A Comparison and Identification Study of Dry Sliding Wear Behaviour of Al/B4CP and Mg/B4CP Composites for Automobile Disk Brakes

2014-04-01
2014-01-0944
The brake friction materials in an automotive brake system play an important role in the overall braking performance of a vehicle. Metal Matrix Composites (MMCs) have been widely investigated and applied due to their advantages of improved strength, stiffness and increased wear resistance over the monolithic alloys in automobile industries. In this paper, Al/B4CP and Mg/B4CP composites were compared to find a suitable candidate material for automotive disk brake application, in terms of wear behavior results of the materials. In addition, the experimental data was also used to model this behavior by identification. The measured tangential force was considered as the input parameter, whereas the weight loss as the output parameter. Preliminary results of this work showed that B4CP addition improved wear resistance of both aluminum and magnesium matrix composites. Additionally, the study pointed out that identified models provide a reliable and cost effective tool for wear prediction.
X