Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Research on Vibration Isolation of Semi-Active Controlled Hydraulic Engine Mount with Air Spring

2014-04-01
2014-01-0008
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Technical Paper

Control Research of Power Train Torsional Vibration Based on Magneto-Rheological Fluid Dual Mass Flywheel

2014-10-13
2014-01-2867
To research the torsional vibration damping characteristic of magneto-rheological fluid dual mass flywheel (MRF-DMF) and the control system in power train, the multi-degree power train torsional vibration model which contains MRF-DMF and semi-active fuzzy control model are built, then the damping characteristic of MRF-DMF in several conditions are gained and compared with MRF-DMF when no control system. The result indicates: the damping characteristic of MRF-DMF effect on power train when using control is better than without control in idle, speed up, slow down, ignition and stalling, while the damping characteristic is less obvious in constant speed because the simulation condition and damping moment relatively stable.
Technical Paper

Dynamic Characteristics and Parameters Analysis of Magneto-rheological Fluid Dual Mass Flywheel

2014-10-13
2014-01-2866
In order to improve structure and performance of magneto-rheological dual mass flywheel (MRF-DMF), some parameters effects on dynamic characteristics are acquired by parameters analysis. The dynamic stiffness and loss angle in different current and different frequency are gained through dynamic characteristic test. The fluid-structure interaction finite element model of MRF-DMF is built and the accuracy is verified by comparison between test and simulation. Based on the model, the parameters analysis is done and the law of MRF viscosity, arc spring stiffness, working clearance, rotor radius and axial width effect on dynamic characteristics are gained, it will prove some guidance for the structure and performance improvement.
X