Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dynamic Measurement of Heat Flux through the Cylinder Wall of a Modern HSDI Engine Over a New European Drive Cycle

2010-04-12
2010-01-0322
A modern high speed four cylinder Diesel engine equipped with high pressure common rail fuel injection equipment has been fitted with extensive instrumentation to allow the heat flux and coolant convective heat transfer coefficient through the cylinder walls to be estimated. The instrumentation was located around the circumference of the cylinder and longitudinally down the cylinder. The engine has been run through the new European drive cycle using a dynamic test stand. From the experimental results it was found that there was a strong correlation between the one dimensional heat flux through the cylinder wall and the engine speed. The changes in heat flux were found to be repeatable over the four repeated ECE sections of the drive cycle. It was also found that the magnitude of heat flux reduced down the length of the cylinder.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
X