Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption

2010-04-12
2010-01-0802
Engine thermal management systems (TMS) are gaining importance in engine development and calibration to achieve low fuel consumption and meet future emissions standards. To benefit from their full potential, a thorough understanding of the effects on engine behavior is necessary. Steady state tests were performed on a 2.0L direct injection diesel engine at different load points. A design of experiments (DoE) approach was used to conduct exhaust gas recirculation (EGR) and injection timing swings at different coolant temperatures. The effect of the standard engine controller and calibration was observed during these tests. The injection timing strategy included a significant dependency on coolant temperature, retarding injection by about 3° crank angle between coolant temperatures of 70°C and 86°C. In contrast, EGR strategy was essentially independent of coolant temperature, though physical interactions were present due in part to the EGR cooler.
Technical Paper

Potential of a Controllable Engine Cooling System to Reduce NOx Emissions in Diesel Engines

2004-03-08
2004-01-0054
This paper investigates the potential for reduced NOx emissions from the integration of thermal factors into the Diesel engine calibration process. NOx emissions from Diesel engines have been shown to be sensitive to engine operating temperature, which is directly related to the level of cooling applied to the engine, in addition to the main engine operating parameters such as injection timing and EGR ratio. Experimental engine characterization of the main engine parameters against coolant temperature set point shows that engine cooling settings can extend the feasible lower limits of fuel consumption and emissions output from Diesel engine. With the adoption of an integrated calibration methodology including engine cooling set point, NOx emissions can be improved by up to 30% at crucial high speed/load operating points seen in the NEDC drive cycle with a minor reduction in fuel economy and small increase in CO output.
Technical Paper

Cold Start Emissions Optimisation Using an Expert Knowledge Based Calibration Methodology

2004-03-08
2004-01-0139
As emissions regulations become more stringent, an efficient and effective method of rig-based transient engine calibration becomes increasingly desirable. It is known that approximately 80% of total drive-cycle exhaust emissions can be produced in the initial warm-up phase before catalyst ‘light-off’ is achieved and catalyst conversion efficiency increases. During this period, there is a clear trade-off that can be made in the strategy between the amount of thermal energy that is delivered to the catalyst and the amount of exhaust emissions produced during the time before catalyst ‘light-off’ is achieved. This paper examines whether an automated expert-knowledge based decision-making methodology can be used to find a satisfactory trade-off between these two parameters whilst reducing the iteration time and level of input required from a calibration engineer.
Technical Paper

Further Investigations on Time-Alignment

2004-03-08
2004-01-1441
The measurement of vehicle modal emissions is technically challenging due to the major issue of determining exhaust gas mass flow rate and ensuring that it is synchronous with the emission measurement of that corresponding ‘slug’ of exhaust gas. This is very evident when attempting to measure small passive NOx catalyst conversion efficiencies. This paper highlights alignment issues with regard to the variation of time delays associated with engine and vehicle events and the CO2 tracer method for determining exhaust gas flows.
Technical Paper

Influence of Time-Alignment on the Calculation of Mass Emissions on a Chassis Rolls Dynamometer

2003-03-03
2003-01-0395
Time-alignment sensitivity studies have been carried out to assess the accuracy of instantaneous mass NOx emissions on a chassis rolls dynamometer. The work is part of a larger project aimed at measuring passive NOx catalyst conversion efficiencies. Instantaneous NOx emissions are examined in relation to the NEDC vehicle speed trace at multi sampling points, and phase and time alignment issues are highlighted and discussed. It has been found that a small mismatch of the vehicle speed trace to the instantaneous mass of emissions of ± 2 seconds can lead to results indicating that the conversion efficiency is anywhere between 0-20%. Finally, examples are presented showing the difficulties of attempting to adjust the time alignment of raw emissions data.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
Technical Paper

Simulation Study of the Series Sequential Turbocharging for Engine Downsizing and Fuel Efficiency

2013-04-08
2013-01-0935
The series sequential turbocharging technology is recently gaining attention as the new round of engine downsizing and emission control becomes imperative for the engine manufacturers. The technology is able to provide combined benefits of transient performance, engine downsizing, fuel efficiency and emissions reduction with foreseeable problems of control, packaging and cost. The matching and characterization of the two interactive turbochargers is a challenging exercise. Two important questions are, how should the two machines be sized and what is the best strategy for the turbochargers across the speed range of the engine at full load. This paper addresses these two questions by comparing a variety of matching sizes and presenting an attempt to identify an optimal valve operating schedule in order to achieve the target limiting torque curve.
Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

Dynamic Behaviour of a High Speed Direct Injection Diesel Engine

1999-03-01
1999-01-0829
Many Diesel engine development programs concentrate almost exclusively on steady state investigations to benchmark an engines performance. In reality, the inter-action of an engine's sub-systems under transient evaluation is very different from that evident during steady state evaluation. The transient operation of a complete engine system is complex, and collecting test data is very demanding, requiring sophisticated facilities for both control and measurement. This paper highlights the essential characteristics of a Diesel engine when undertaking testbed transient manouevres. Results from simple transient sequences typical of on-road operation are presented. The tests demonstrate how transient behaviour of the engine deviates greatly from the steady state optimum settings used to control the engine.
Technical Paper

Transient Investigation of Two Variable Geometry Turbochargers for Passenger Vehicle Diesel Engines

1999-03-01
1999-01-1241
The use of variable geometry turbocharging (VGT) as an aid to performance enhancement has been the subject of much interest for use in high-speed, light-duty automotive diesel applications in recent times (4). One of the key benefits anticipated is the improved transient response possible with such a device over the conventional fixed geometry turbine with wastegate. The transient responses of two different types of variable geometry turbocharger have been investigated on a dynamic engine test bed. To demonstrate the effect of the turbocharger on the entire system a series of step changes in engine load at constant engine speed were carried out with the turbocharger and exhaust gas recirculation (EGR) systems under the control of the engine management microprocessor. Results are presented which compare the different performance and emissions characteristics of the devices. Some control issues are discussed with a view to improving the transient response of both types.
Technical Paper

Predicting the Nitrogen Oxides Emissions of a Diesel Engine using Neural Networks

2015-04-14
2015-01-1626
Nitrogen oxides emissions are an important aspect of engine design and calibration due to increasingly strict legislation. As a consequence, accurate modeling of nitrogen oxides emissions from Diesel engines could play a crucial role during the design and development phases of vehicle powertrain systems. A key step in future engine calibration will be the need to capture the nonlinear behavior of the engine with respect to nitrogen oxides emissions within a rapid-calculating mathematical model. These models will then be used in optimization routines or on-board control features. In this paper, an artificial neural network structure incorporating a number of engine variables as inputs including torque, speed, oil temperature and variables related to fuel injection is developed as a method of predicting the production of nitrogen oxides based on measured test data. A multi-layer perceptron model is identified and validated using data from dynamometry tests.
Technical Paper

Freevalve: A Comparative GWP Life Cycle Assessment of E-fuel Fully Variable Valvetrain-equipped Hybrid Electric Vehicles and Battery Electric Vehicles

2023-04-11
2023-01-0555
Throughout its history, the internal combustion engine has been continuously scrutinized to achieve strict legislative emission targets. With the dawn of renewable fuels fast approaching, most Internal Combustion Engine (ICE) equipped hybrid electric vehicles (HEVs) face difficulty in adjusting their precise control strategies to new fuels. This is partly due to constrained limitations associated with camshaft-induced design-point air induction limitations. Freevalve is a fully variable valvetrain technology enabling independent control of valve lifts, durations, and timings. Additionally, the added degrees-of-freedom enable the capability to shut-off individual engine valves, optimizing combustion performance and stability through specific speed ranges. By design, it minimizes the existing breathing-related constraints that are currently hindering the extraction of the higher efficiency potential of ICEs.
Book

Chassis Dynamometer Testing: Addressing the Challenges of New Global Legislation

2017-06-29
The use of the chassis dynamometer test cells has been an integral part of the vehicle development and validation process for several decades, involving specialists from different fields, not all of them necessarily experts in automotive engineering. CHASSIS DYNAMOMETER TESTING: Addressing the Challenges of New Global Legislation (WLTP and RDE) sets out to gather knowledge from multiple groups of specialists to better understand the testing challenges associated with the vehicle chassis dynamometer test cells, and enable informed design and use of these facilities.
X