Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Thermal Radiation Analysis on Automotive Lamp Using CFD and Ray Tracing Method

2017-03-28
2017-01-1737
Beyond the modern design and illumination quality of automotive lamps, thermal management plays a crucial role and must be fulfilled in the early stages of the design process. An excessive thermal radiation from incandescent bulb can cause a severe thermal degradation of plastic parts such as housing or optical lens. Hence, to assess such impact of heat on the plastic parts, thermal analysis of a license plate lamp was investigated by a proposed technique combining computational fluid dynamics (CFD) and ray tracing mapping method. Then, the accuracy and computational cost of the method were compared with thermal results obtained by a thermal radiation model using Monte Carlo (MC) technique for calculating radiation effect coupled with CFD in heat transfer analysis. Finally, a comparison of temperature results from both techniques were validated with practical thermal measurements of license plate lamp prototype.
Technical Paper

Computational Study on Design of Battery Cooling System for Retrofitted EV Passenger Cars

2015-03-30
2015-01-0102
In this study, a prospect of employing electric fans in a battery cooling system was investigated by means of a computational fluid dynamic (CFD) analysis. The concept was to have the fans to stimulate appropriate air flows inside the battery compartment. A rear utility space behind back passenger seats was dedicated for the battery compartment containing 100 cells of Lithium Ion batteries. Due to limited working space, a battery arrangement was conceived as a double stacking configuration. In computational analysis, the heat source model of employed batteries was obtained from the experimental work. Several potential designs of cooling patterns were investigated. The design parameters of interest were locations of inlet/outlet, and air flow rate. The performance criteria of cooling system were resulting battery temperatures, temperature distribution uniformity, required pump pressure, and structural integrity.
Journal Article

Liquid Cooled Induction Motor: Computational Design, Heat Transfer Analysis, Parametric Study, and Performance Testing

2013-03-25
2013-01-0005
In order to use an electric induction motor to power an automotive vehicle, heat occurred in a motor is an important issue. Generally, an induction motor could be operating at a high load for many extensive periods. The generated heat in motor could cause damage on motor parts subsequently decreasing their useful service life. The objective of this study was to develop a cooling system of the induction motor by introducing liquid coolant passages on a housing part to obtain higher cooling efficiency than that of conventional Totally Enclosed Fan Cooled system (TEFC). Principally, conventional TEFC finned housing and rear fan would be replaced by a cylindrical aluminum housing. Special heat transfer oil was chosen as a coolant mainly due to its dielectric property. The liquid cooling housing geometry was defined by series of cooling passages to guide the liquid coolant through and around the housing. The design of liquid cooling system was performed via computational simulation.
X