Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Design and Optimization of Web Fillets for Commercial Vehicle Crankshaft for Improving SCF and Theoretically Correlated

2016-04-05
2016-01-1342
Crankshaft is one of the critical components of an engine (5C: cylinder head, connecting rod, crankshaft, camshaft and cylinder block). It is subjected to repetitive and dynamic loads due to cyclic operation of an engine and inertia forces. Due to uneven mass distribution, failure zones occur near fillets and holes in journal locations during operation of the engine. Hence, this topic was chosen because of increasing interest in higher payloads, lower weight, higher efficiency and shorter load cycles in crankshaft equipment. Calculation of Crankshaft strength consists initially in determining the nominal alternating bending and nominal alternating torsional stresses, which multiplied by the appropriate SCF (Stress Concentration Factor), result in an equivalent alternating stress. This equivalent alternating stress is then compared with the fatigue strength of the selected crankshaft material. This comparison will show whether or not the crankshaft concerned is dimensioned adequately.
Technical Paper

Fatigue Analysis and Validation of Fracture Split Connecting Rod for Value Engineering Using 1D and 3D Simulation Tools

2016-03-27
2016-01-1735
To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs, hence the need for upgrading the existing/proven integral connecting rod to fracture split connecting rod. This technique provides gains as weight reduction and consequently reducing noise and vibration due to the decrease of the oscillating mass from the system. Using the proposed fracture split connecting rod, it is estimated that cost savings of up to 10%, reduction in weight and better fatigue performance (25% - 30%) can be achieved. For this, we have used simulation tools to reduce number of physical tests and thereby achieving considerable reduction in design and development time and cost. High carbon alloy steel used for manufacturing fracture split connecting rod and it doesn’t require additional heat treatment after hot forging.
Technical Paper

Static and Dynamic Study of 4-Cylinder Diesel Engine Crankshaft using FEM and Analytical Approaches

2016-02-01
2016-28-0108
Crankshaft is one of the critical components of an engine (5C: cylinder head, connecting rod, crankshaft, camshaft and cylinder block). It is subjected to repetitive and dynamic loads due to cyclic operation of an engine, inertia forces due to uneven mass distribution with failure zones as fillets and holes in journal locations. Fatigue is most common cause in failure of the crankshaft. Its failure will cause serious damage to the engine so its reliability verification must be performed. The load is applied as per the firing order of the cylinder for 2 revolutions of crankshaft, to cover firing condition of each cylinder. Loads with respect to crank angle or time are applied at respective locations and results are taken on 360 steps for 2 complete revolutions of crank. The topic was chosen because of increasing interest in higher payloads, lower weight, higher efficiency and shorter load cycles in crankshaft equipment.
Technical Paper

Design Optimization of Powertrain Mounts for Vibration Isolation on Heavy Commercial Vehicle (HCV) Six Cylinder Inline Diesel Engine

2015-01-14
2015-26-0127
The main emphasis for a commercial vehicle design which was focused on fuel-economy and durability does not fulfill the increasing customer expectations anymore. Commercial vehicle designers need to focus on other vehicle aspects such as steering, ride comfort, NVH, braking, ergonomics and aesthetics in order to provide car like perception to truck, bus drivers and passengers during long distance drives. Powertrain mounting system must perform many functions. First and foremost, the mounting system must maintain & control the overall motion of the powertrain, to restrict its envelope reasonably, thereby avoiding damage to any vehicle component from the potential impact. This requires the mount to be stiff. Second the mount must provide good vibration isolation to have a comfortable ride to the vehicle occupant. This requires the mount to be soft.
Technical Paper

Structural Non-linear Topology Optimization of Transmission Housing and Its Experimental Verification

2015-03-30
2015-01-0098
Advanced Non-linear topology optimization methods have been addressed as the most promising techniques for light weight and performance design of Powertrain structures. The theoretical achievements are obtained both mechanically and mathematically. Nowadays, the great challenge lies in solving more complicated engineering design problems with multidisciplinary objectives or complex structural systems. The purpose of this paper is to provide a forum to present new developments in structural Non-linear topology optimization. The advantage of the proposed method is that structural optimization on irregular design domains can be carried out easily. Furthermore, this method integrates the stress analysis and the boundary evolution within the framework of finite element methods. In this paper, mainly focused on the Commercial Vehicles Powertrain component i.e. Transmission Housing.
Technical Paper

Aluminum Gear Shift Fork with Supporting Pad for Light Weighting in Commercial Vehicles

2015-03-30
2015-01-0088
To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For Commercial Vehicles, an attempt is made to replace existing Gear Shift Fork from FC Iron (Ferro Cast Iron) to ADC (Aluminum Die Casting) without compromising its strength & stiffness, considering/bearing all the worst road load cases and severe environmental conditions. ADC has good mechanical and thermal properties compared to FC Iron. Feasible design has been Optimized within the given design space with an extra supporting pad for load distribution. Optimization, Stiffness, Contact pattern has been done using OptiStruct, Nastran & Ansys for CAE evaluation. A 6-speed manual transmission is used as an example to illustrate the simulation and validation of the optimized design. Advanced linear topology optimization methods have been addressed as the most promising techniques for light weighting and performance design of Powertrain structures.
Technical Paper

Investigation of Gasket Sealing Behavior of Cylinder Head and Block under Engine Operating Conditions and Its Experimental Verification

2015-01-14
2015-26-0029
Proper sealing of an engine is very important parameter in an engine design. Even small amount of gas leakage from the engine can affect the overall performance of the engine during operation. There are two important factors in enhancing the efficiency of the sealing of the gasket are right tightening torque of bolts & gasket design. In this study, both the distribution of the contact pressure on the gasket, and the stresses of the cylinder head at different loading conditions, such as cold assembly, hot assembly, cold start, and hot firing, is simulated by commercial tool, based on the finite element method (FEM). The results shows that the efficiency of the sealing of the cylinder head gasket depends on the tightening torque of the hold-down bolts, without taking into consideration any thermal load resulting from the temperature distribution in the cylinder head.
X