Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Lubricant-Oil-Induced Pre-ignition Phenomena in Modern Gasoline Engines: Using Experimental Data and Numerical Chemistry to Develop a Practical Correlation

2021-09-05
2021-24-0052
Recent research on thermal reciprocating engines has focused on the influence of lubricant oil on the combustion process, which can lead to highly undesired super-knock events. Low-Speed Pre-Ignition (LSPI) events severely limit the further development of Direct Injection Spark Ignition Engines (DISI), preventing high efficiencies from being achieved. However, there is still a lack of knowledge about the fundamental mechanisms leading to LSPI, due to the complex phenomena involved and the interaction between lubricant oil and fuel. Understanding how the presence of lubricant oil traces affects gasoline chemical reactivity is an essential step for performing successful numerical simulations aimed at predicting the onset of LSPI phenomena. Reaction mechanisms able to predict oil-fuel interaction have been proposed, but they are computationally demanding.
Technical Paper

Experimental Investigations on the Sources of Particulate Emission within a Natural Gas Spark-Ignition Engine

2017-09-04
2017-24-0141
The aim of the present work is to provide further guidance into better understanding the production mechanisms of soot emissions in Spark-Ignition SI engines fueled with compressed natural gas. In particular, extensive experimental investigations were designed with the aim to isolate the contribution of the fuel from that of lubricant oil to particle emissions. This because the common thought is that particulate emerging from the engine derives mainly from fuel, otherwise the contribute of lubricant oil cannot be neglected or underestimated, especially when the fuel itself produces low levels of soot emissions, such as in the case of premixed natural gas. The fuel-derived contribution was studied by analyzing the influence that natural gas composition has on soot emitted from a single cylinder Spark-Ignition (SI) engine. To achieve this purpose, methane/propane mixtures were realized and injected into the intake manifold of a Single-Cylinder SI engine.
X