Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Technical Paper

Lightweight Engine Structures – Mechanical, Acoustic and Production Aspects

2003-03-03
2003-01-0406
Significant weight reduction on the powertrain can only be achieved by the combined use of lightweight materials with specific design approaches. The component with the highest contribution to the engine weight is the crankcase. As the central component with many integrated functions, new crankcase concepts require comprehensive development in view of the mechanical and acoustic behavior. After basic concept development and FE-analysis a test engine was built to evaluate the forward-looking light-weight concepts under realistic conditions. Especially the comparison of modern cylinder running surfaces was a topic of extensive material investigation and engine durability tests. Both Aluminum and Magnesium were investigated as material for the crankcase of the test engine. Beside the functional aspects the production cost of lightweight concepts is the decisive issue for their implementation in volume production.
Technical Paper

Lightweight Engine Design Strategies

2000-04-02
2000-01-1546
During the past years advances in fuel efficiency of car engines did not result in the expected reduction in overall fuel consumption of new car generations. One reason is the increasing vehicle weight. In an overall–weight analysis of an automobile the engine and as part of it, the crankcase represents a single component with a high weight reduction potential. This paper discusses weight reduction strategies using lightweight materials and modern design approaches. The application of lightweight materials for new crankcase concepts implies comprehensive design considerations to achieve weight reductions as close as possible to the potential of the selected material. A specific approach for inline and V–engine crankcase concepts is discussed in detail. Engine weight reduction can also be achieved through substituting large and therefore heavy engines with small high performance engines.
Technical Paper

Dual Mode VCS Variable Compression System - System Integration and Vehicle Requirements

2019-04-02
2019-01-0248
Future legislation scenarios as well as stringent CO2 targets, in particular under real driving conditions, will require the introduction of new and additional powertrain technologies. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the Internal Combustion Engine (ICE). There is clearly a competition of new and different ICE-Technologies [1] including VCR. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The implementation of Miller or Atkinson cycles is an essential criterion for increased geometric Compression Ratio (CR). The DUAL MODE Variable Compression System (VCS)TM enables a 2-stage variation of the connecting rod length and thus of the compression ratio (CR).
X