Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Diesel Combustion Analysis via Block Vibration during Engine Transient Operation

2013-09-08
2013-24-0147
To ensure compliance with emerging Diesel emission standards and demands for reduced fuel consumption, the optimization of the engine operation is imperative under both stationary and real operation conditions. This issue imposes a strict control of the combustion process that requires a closed-loop algorithm able to provide an optimal response of the engine system not only to warm-up, accelerations, changes in the slope of the road, etc., but also to engine aging and variations of fuel properties. In this paper, with the final purpose of accomplishing an innovative control strategy based on non intrusive measurement, the engine block vibration signal is used to extract useful information able to characterize the in-cylinder pressure development during the combustion process. In the previous research activity, the same methodology was applied to stationary operation of the engine.
Technical Paper

Analysis of the Relationship between Noise Emission and In-Cylinder Pressure in a Small Displacement Diesel Engine

2014-04-01
2014-01-1364
Many studies have demonstrated that an efficient control of the combustion process is crucial in order to comply with increasingly emerging Diesel emission standards and demanding for reduced fuel consumption. Methodologies based on real-time techniques are imperative and even if newly sensors will be available in the near future for on-board installation inside the cylinder, non intrusive measurements are still considered very attractive. This paper presents an experimental activity devoted to analyze the noise emission from a small displacement two-cylinder Diesel engine equipped by HPCR (high pressure common rail) fuel injection system. The signals acquired during stationary operation of the engine are analyzed and processed in order to highlight the different sources contributing to the overall emission. Particular attention is devoted to the specific samples of the signal that are mainly caused by the combustion process in order to extract the combustion contribution.
X