Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Heat Transfer Analysis of an Electric Motor Cooled by a Large Number of Oil Sprays Using Computational Fluid Dynamics

2022-03-29
2022-01-0208
This paper reports on an analytical study of the heat transfer and fluid flow in an electric vehicle e-Motor cooled by twenty five sprays/jets of oil. A three-dimensional, quasi-steady state, multi-phase, computational fluid dynamics (CFD) and conjugate heat transfer (CHT) model was created using a commercial CFD software. The transport equations of mass, momentum, energy and volume fraction were solved together with models for turbulence and wall treatment. An explicit formulation of the volume of fluid (VOF) technique was used to simulate the sprays, a time-implicit formulation was used for the flow-field and three dimensional conduction heat transfer with non-isotropic thermal conductivities was used to simulate the heat transfer in the windings.
Technical Paper

Multi-Domain Optimization for Fuel Economy Improvement of HD Trucks

2019-04-02
2019-01-0312
Fuel usage negatively impacts the environment and is a significant portion of operational costs of moving freight globally. Reducing fuel consumption is key to lessening environmental impacts and maximizing freight efficiency, thereby increasing the profit margin of logistic operators. In this paper, fuel economy improvements of a cab-over style 49T heavy duty Foton truck powered by a Cummins 12-liter engine are studied and systematically applied for the China market. Most fuel efficiency improvements are found within the vehicle design when compared to opportunities available at the engine level. Vehicle design (improved aerodynamics), component selection/matching (low rolling resistance tires), and powertrain electronic features integration (shift schedule/electronic trim) offer the largest opportunities for lowering fuel consumption.
Technical Paper

Advanced System Simulation Wheel Loader Model for Transient Response and Architecture Studies

2015-09-29
2015-01-2824
Understanding the complex and dynamic nature of wheel-loader's operation requires a detailed system model. This paper describes the development of a conventional wheel-loader's system model that can be used to evaluate the transient response. The model includes engine details such as a mean value engine model, which takes into account turbocharger dynamics and engine governor controller. This allows the model to predict realistic performance and fuel consumption over a drive cycle. The wheel-loader machine is modeled in LMS Amesim® and the engine governor controller is modeled in Matlab/SIMULINK®. In order to simplify the model, hydraulic loads from the boom / bucket mechanism, steering and cooling fan are modeled as hydraulic load inputs obtained from typical short V-drive cycle. Critical wheel-loader drive cycle inputs into the model have been obtained from testing and have been used to validate the system response and cycle fuel consumption.
Technical Paper

Investigation of Aerodynamic Influence on Truck Platooning

2015-09-29
2015-01-2895
This paper investigates the aerodynamic influence of multiple on-highway trucks in different platooning configurations. Complex pressure fields are generated on the highways due to interference of multiple vehicles. This pressure field causes an aerodynamic drag to be different than the aerodynamic drag of a vehicle in a no-traffic condition. In order to study the effect of platooning, three-dimensional modeling and numerical simulations were performed using STAR-CCM+® commercial Computational Fluid Dynamics (CFD) tool. The aerodynamic characteristics of vehicles were analyzed in five different platooning configurations with two and three vehicles in single and multiple lanes. A significant Yaw Averaged Aerodynamic Drag (YAD) reduction was observed in both leading and trailing vehicles. YAD was based on the average result of three different yaw angles at 0°, −6° and 6°. In single-lane traffic, YAD reduction was up to 8% and 38% in leading and trailing vehicles, respectively.
Technical Paper

Analysis and Design Validation of Medium Duty Truck Cooling System

2016-09-27
2016-01-8073
Various 1D simulation tools (KULI & LMS Amesim) and 3D simulation tools (ANSYS FLUENT®) can be used to size and evaluate truck cooling system design. In this paper, ANSYS FLUENT is used to analyze and validate the design of medium duty truck cooling systems. LMS Amesim is used to verify the quality of heat exchanger input data. This paper discusses design and simulation of parent and derivative trucks. As a first step, the parent truck was modeled in FLUENT (using standard' k - ε model) with detailed fan and underhood geometry. The fan is modeled using Multiple Reference Frame (MRF) method. Detailed geometry of heat exchangers is skipped. The heat exchangers are represented by regular shape cell zones with porous medium and dual cell heat exchanger models to account for their contributions to the entire system in both flow and temperature distribution. Good agreement is observed between numerical and experimental engine out temperatures at different engine operating conditions.
Technical Paper

Numerical Simulation of Class 8 Tractor Trailer Geometries and Comparison with Wind Tunnel Data

2024-04-09
2024-01-2533
This article analyzes the aerodynamic performance of Class 8 tractor-trailer geometries made available by the Environmental Protection Agency (EPA) using CFD simulation. Large Eddy Simulations (LES) were carried out with the CFD package, Simerics-MP+. A Sleeper tractor and a 53-foot box trailer configuration was considered. The configuration featured a detailed underbody, an open-grille under-hood engine compartment, mirrors, and the radiator and condenser. Multiple tractor-trailer variants were studied by adding aerodynamic surfaces to the baseline geometries. These include tank fairings and side extenders for the cabins, two types of trailer skirts, and a trailer tail. The effect of these devices towards reducing the overall vehicle drag was investigated. Mesh generation was carried out directly on the given geometry, without any surface modifications, using Simerics’ Binary-Tree unstructured mesher.
X