Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Actuator Fault Detection and Diagnosis of 4WID/4WIS Electric Vehicles

2013-10-14
2013-01-2544
A fault detection and diagnosis (FDD) algorithm of 4WID/4WIS Electric Vehicles has been proposed in this study aiming to find the actuator faults. The 4WID/4WIS EV is one of the promising architectures for electric vehicle designs which is driven independently by four in-wheel motors and steered independently by four steering motors. The 4WID/4WIS EVs have many potential abilities in advanced vehicle control technologies, but diagnosis and accommodation of the actuator faults becomes a significant issue. The proposed FDD approach is an important part of the active fault tolerant control (AFTC) algorithm. The main objective of the FDD approach is to monitor vehicle states, find the faulty driving motor and then feedback fault information to the controller which would adopt appropriate control laws to accommodate the post-fault vehicle control system.
Journal Article

Fault-Tolerant Control for 4WID/4WIS Electric Vehicle Based on EKF and SMC

2015-09-29
2015-01-2846
This paper presents a fault-tolerant control (FTC) algorithm for four-wheel independently driven and steered (4WID/4WIS) electric vehicle. The Extended Kalman Filter (EKF) algorithm is utilized in the fault detection (FD) module so as to estimate the in-wheel motor parameters, which could detect parameter variations caused by in-wheel motor fault. A motion controller based on sliding mode control (SMC) is able to compute the generalized forces/moments to follow the desired vehicle motion. By considering the tire adhesive limits, a reconfigurable control allocator optimally distributes the generalized forces/moments among healthy actuators so as to minimize the tire workloads once the actuator fault is detected. An actuator controller calculates the driving torques of the in-wheel motors and steering angles of the wheels in order to finally achieve the distributed tire forces. If one or more in-wheel motors lose efficacy, the FD module diagnoses the actuator failures first.
Technical Paper

Passive Fault-Tolerant Performance of 4WID/4WIS Electric Vehicles Based on MPC and Control Allocation

2013-09-08
2013-24-0145
The passive fault-tolerant performance of the integrated vehicle controller (IVC) applied on 4WID/4WIS Electric Vehicles has been investigated in this study. The 4WID/4WIS EV is driven independently by four in-wheel motors and steered independently by four steering motors. Thanks to increased control flexibility of the over-actuated architecture, Control Allocation (CA) can be applied to control the 4WID/4WIS EVs so as to improve the handling and stability. Another benefit of the over-actuated architecture is that the 4WID/4WIS Electric Vehicle has sufficient redundant actuators to fight against the safety critical situation when one or more actuators fail.
Technical Paper

Fault-Tolerant Control for 4WID/4WIS Electric Vehicles

2014-10-13
2014-01-2589
The passive fault-tolerant approach for four-wheel independently driven and steered (4WID/4WIS) electric vehicles has been investigated in this study. An adaptive control based passive fault-tolerant controller is designed to improve vehicle safety, performance and maneuverability when an actuator fault happens. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures with the inequality constraints; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using Model Predictive Control (MPC); 3) a reconfigurable control allocator that redistributes the generalized forces/moments to four wheels with equality constrained optimization.
X