Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Misfire Detection in a Dynamic Skip Fire Engine

2015-04-14
2015-01-0210
Misfire detection and monitoring on US passenger vehicles are required to comply with detailed and specific requirements contained in the OBD-II regulations. Numerous technical papers and patents discuss various methods and metrics for detecting misfire in conventional all-cylinder firing engines. However, the current methods are generally not suitable for detecting misfires in a dynamic skip fire engine. For example, a detection approach based on peak crankshaft angular acceleration may work well in conventional, all-cylinder firing engine operation, since it is expected that crankshaft acceleration will remain generally consistent for a given operating condition. In a skip fire engine, any cylinder or cycle may be skipped. As a result, the crankshaft acceleration peaks and profiles may change abruptly as the firing sequence changes. This paper presents two approaches for detecting misfires in a dynamic skip fire engine.
Technical Paper

Modeling and Simulation of Airflow Dynamics in a Dynamic Skip Fire Engine

2015-04-14
2015-01-1717
Dynamic skip fire is a control method for internal combustion engines in which engine cylinders are selectively fired or skipped to meet driver torque demand. In this type of engine operation, fueling, and possibly intake and exhaust valves of each cylinder are actuated on an individual firing opportunity basis. The ability to operate each cylinder at or near its best thermal efficiency, and to achieve flexible control of acoustic and vibrational excitations has been described in previous publications. Due to intermittent induction and exhaust events, air induction and torque production in a DSF engine can vary more than conventional engines on a cycle-to-cycle basis. This paper describes engine thermofluid modeling for this type of operation for purposes of air flow and torque prediction.
X