Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental Test Campaign on a Battery Electric Vehicle: On-Road Test Results (Part 2)

2015-04-14
2015-01-1166
The experimental measurement of the energy consumption and efficiency of Battery Electric Vehicles (BEVs) are key topics to determine their usability and performance in real-world conditions. This paper aims to present the results of a test campaign carried out on a BEV, representative of the most common technology available today on the market. The vehicle is a 5-seat car, equipped with an 80 kW synchronous electric motor powered by a 24 kWh Li-Ion battery. The description and discussion of the experimental results is split into 2 parts: Part 1 focuses on laboratory tests, whereas Part 2 focuses on the on-road tests. As far as on-road tests are concerned, the vehicle has been tested over three different on-road routes, ranging from 60 to 90 km each, with a driving time ranging from approximately one and half to two and half hours.
Journal Article

Experimental Test Campaign on a Battery Electric Vehicle: Laboratory Test Results (Part 1)

2015-04-14
2015-01-1167
The experimental measurement of the energy consumption and efficiency of Battery Electric Vehicles (BEVs) are key topics to determine their usability and performance in real-world conditions. This paper aims to present the results of a test campaign carried out on a BEV, representative of the most common technology available today on the market. The vehicle is a 5-seat car, equipped with an 80 kW synchronous electric motor powered by a 24 kWh Li-Ion battery. The description and discussion of the experimental results is split into 2 parts: Part 1 focuses on laboratory tests, whereas Part 2 focuses on the on-road tests. As far as the laboratory tests are concerned, the vehicle has been tested over three different driving cycles (i.e. NEDC, WLTC and WMTC) at two different ambient temperatures (namely +25 °C and −7 °C), with and without the use of the cabin heating, ventilation and air-conditioning system.
Technical Paper

Modeling and Validation of Lithium-Ion Battery based on Electric Vehicle Measurement

2014-04-01
2014-01-1850
This contribution deals with the modeling and validation of multi-physical battery-models, by using the programming language Modelica. The article presents a battery model which can be used to simulate the electric, thermal and aging behavior of a lithium-ion traction battery of an EV in different load conditions. The model is calibrated with experimental data of an electric vehicle tested on a chassis dynamometer. The calibration parameters, that are the open circuit voltage, the serial resistance and the resistance and capacitance of two serially connected RC-circuits, are used to configure the electric equivalent circuit model of the battery. The calibration process is based on a best-fit of the measured data from one test, while the validation is made by comparing measured and simulated battery voltages of a different battery load cycle.
X