Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Impact of Boundary Lubrication Performance of Engine Oils on Friction at Piston Ring-Cylinder Liner Interface

2014-10-13
2014-01-2787
To explore the measures that can be used to improve the fuel economy of internal combustion engines, we investigated how friction at the piston ring-cylinder liner interface is influenced by the boundary lubrication performance of engine oils. We formulated several engine oils with varying boundary lubrication performance and tested them for ring-liner friction by using a floating liner friction tester. We used friction modifiers (FMs) to modify the boundary lubrication performance of engine oils. We found that ring-liner friction is well correlated with the friction coefficients in boundary lubrication regimes when measured by a laboratory friction tester. We also found that the impact of the boundary lubrication performance of engine oils was emphasized in low viscosity engine oils. It makes it possible for improved boundary lubrication performance to inhibit or overcome the viscosity reduction-induced increase of friction energy.
Technical Paper

Evaluation of Engine Oil Deterioration Using a Comb-Shaped Electrode

2016-10-17
2016-01-2317
At present, the lifetime of engine oil is judged by chemically measuring the changes in its properties while running of an actual vehicle or by setting the standards for its replacement cycle in terms of travel distance and time. The advantage of the former is that the lifetime can be judged with a high degree of reliability, but its disadvantage is that information on the lifetime is difficult for users to obtain. The problem with the latter is that the standards are unreliable. Therefore, users need a simple and reliable method to evaluate the degradation of engine oil so they can determine the appropriate time to change it. We examined the possibility of evaluating the lifetime of engine oil by measuring its capacitance using a comb-shaped electrode. As a result, we found that the capacitance of four types of engine oil collected at markets tended to decrease during the initial stage of degradation and then increased in the later stage.
Technical Paper

Frictional and Wear Properties of Diamond-Like Carbon Films with Lubricant Additives

2023-04-11
2023-01-0871
Diamond-Like Carbon (DLC) is a promising engine material for reducing friction and wear on sliding parts. By contrast, MoDTC lubricant additives are known to promote the wear of a-C:H films. However, the mechanism that promotes wear and the formation of tribofilms on DLC parts when in contact with molybdenum-based lubricant additives has not been sufficiently studied. The purpose of this research is to determine the wear promotion mechanism and formation of tribofilm on DLC by lubricant additives by comparing friction and wear properties. We conducted friction and wear tests using a tribometer with DLC (ta-C, ta-C:H, a-C, and a-C:H) blocks, FC250 (cast iron) rings, and oils containing lubricant additives (MoDTC, MoDTP, and Mo without DTC ligand) by observing and analyzing the sliding surfaces of specimens. No wear was observed for any of the DLCs (ta-C, ta-C:H, a-C:H, and a-C) in combination with oils containing MoDTP or Mo without DTC ligands.
Technical Paper

Piston Detergency and Anti-Wear Performance of Non-Phosphorus and Non-Ash Engine Oil

2019-01-15
2019-01-0021
The deposition of ash derived from engine oil on the surface of diesel particle filters (DPF) has recently been reported to degrade the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst, reducing the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus, non-ash engine oil (NPNA) that does not contain metal-based detergents or zinc dialkyldithiophosphate (ZnDTP). Various engine tests were performed, and we confirmed that under normal running conditions, the NPNA oil had a sufficiently high piston detergency and wear resistance-two important requirements for engine oil-to meet current American and Japanese standards. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

Impact of Non-Phosphorus and Non-Ash Engine Oil on After-Treatment Devices

2014-10-13
2014-01-2782
Automobile exhaust gas contains various harmful substances other than carbon dioxide, so exhaust gas post-processing devices have been developed to reduce their environmental load. Engine oil has contributed to the improvement of automobiles' environmental performance due to its excellent fuel-saving and long-drain properties. Recently, the lifetime of an exhaust gas post-processing device has been reported to decrease due to ash and phosphorus in engine oil. We have developed non-phosphorus and non-ash engine oil (NPNA), in which metal-based detergents and zinc dialkyldithiophosphate (ZnDTP) were not contained. We have performed a verification test for NPNA using an actual engine. In a performance test for a diesel particulate filter (DPF), the amount of soot and ash deposited onto a DPF was smaller when NPNA was used than when commercially available engine oil was used.
Technical Paper

Influence of Shear-Thinning of Polymer-Containing Engine Oils on Friction at the Piston Ring-Cylinder Liner Interface

2013-10-14
2013-01-2567
Friction loss at the piston ring-cylinder liner interface in an internal combustion engine strongly affects the fuel economy of automobiles. However, the relationships between viscosity characteristics of engine oils and friction at ring-liner interface are not well understood. In this study, we experimentally measured ring-liner friction using a floating liner method with various formulations of engine oils. Two types of engine oils were tested: Non-Newtonian oils that contain polymer additive viscosity modifiers (VMs) and Newtonian VM-free oils. We first tested VM-free oils with different base oil viscosities and found that the dominant friction energy mechanism changed from hydrodynamic lubrication to mixed lubrication as engine oil viscosity or piston speed were decreased. Friction energy reached a minimum at this transition point.
X