Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

A Novel Approach to Enhance Stop/Start Battery Life in a Vehicle with Micro Hybrid System Functions

2016-04-05
2016-01-0007
Micro Hybrid Systems are essentially first step towards the electrification of the powertrains. They are aimed at improving the fuel efficiency of the conventional gasoline and diesel power trains with conventional 12 V electrical system, and thus reduce the CO2 emissions as well. Various technologies like Engine Stop-Start, Intelligent Alternator Control, and Electrical Energy Management Systems are included in the bracket of micro hybrid systems. These system functions demand a totally different approach for managing the SLI battery, which is a total departure from the conventional approach. Particularly, the Alternator Shutdown function of Intelligent Alternator Control maintains a calibrated average level of State of Charge, which is typically around 80%, to ensure that the battery can accept more current, during the energy recuperation, which indirectly improves fuel economy.
X