Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Structural Evaluation of Ashcan and Performance Enhancement by Spring Optimization

2014-04-01
2014-01-0350
Ashcan contributes to the aesthetics and elegance of the vehicle interiors. It is used to store the ash. Generally the ashcan is fitted on the console of the car. The operational requirement of ashcan is to open with minimum force but not at very low accelerations experienced during the vehicle bump event. Also closing force should be comparatively higher. The closing of the ashcan lid should ensure positive locking, which may be achieved by using cam and follower locking mechanism. The other requirement is that it should be structurally durable enough to sustain the repetitive loading during its operation. Ashcan may undergo severe abusive loading during its operation. To simulate these operations and understand the physics of the problem, a multi-step non-linear analysis involving a complex contact situation is carried out. The scope of this paper is to explain the procedure of calculating the force required for closing and opening of the ashcan lid.
Technical Paper

Effect of Hinge Axis Inclination and Hinge Tolerance on Door Strength under Abuse Loads

2018-04-03
2018-01-0480
As revealed from J. D. Power surveys, today most vehicle owners consider perceived quality as a direct indicator of the vehicle build quality and durability. [5] The problem has become more prominent and noticeable in recent times, due to the desire for reduced cost, reduced weight targets, aesthetic demands, and crash requirements. The performance of the door assembly when subjected to an abuse load of sag and over opening is one such perceived quality indicator which gives the customer the first impression about the engineering and build quality of the vehicle. Door hinge inclination and hinge contact flushness tolerance are the major design parameters affecting this performance. Although these are an important design parameter, the precise quantification of the effect of these design parameters on door performance under abuse loading has remained somewhat elusive.
X