Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Penalization Method for 2D Ice Accretion Simulations

2019-06-10
2019-01-1939
Numerical tools for 3D in-flight icing simulations are not straightforward to automate when seeking robustness and quality of the results. Difficulties arise from the geometry and mesh updates which need to be treated with care to avoid folding of the geometry, negative volumes or poor mesh quality. This paper aims at solving the mesh update issue by avoiding the re-meshing of the iced geometry. An immersed boundary method (here, penalization) is applied to a 2D ice accretion suite for multi-step icing simulations. The suggested approach starts from a standard body-fitted mesh, thus keeping the same solution for the first icing layer. Then, instead of updating the mesh, a penalization method is applied including: the detection of the immersed boundary, the penalization of the volume solvers to impose the boundary condition and the extraction of the surface data from the field solution.
Technical Paper

Multi-time Step Icing Calculations Using a 3D Multi-block Structured Mesh Generation Procedure

2015-06-15
2015-01-2161
The paper presents the framework of fully automated two/three dimensional ice accretion simulation package, with emphasis on the remeshing step. The NSMB3D-ICE Navier-Stokes code, coupled to an Eulerian droplet module and iterative Messinger thermodynamic model, can perform multi time-steps ice accretion simulations via an automated multi-block elliptic/parabolic grid generation code (NSGRID3D). Attention is paid to the efficiency and robustness of the numerical calculations especially for complex 3D glaze ice simulation. The new automated multi time-step icing code NSMB3D-ICE/NSGRID3D is used to compute several icing studies on the GLC305 wing for rime and glaze ice cases.
X