Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Advanced Power-Cylinder Tribology Using A Dynamically Loaded Piston Ring on Cylinder Bore Tribometer

2014-10-13
2014-01-2783
It has long been understood that the piston assembly of the internal combustion engine accounts for a significant proportion of total engine friction. Modern engines are required to have better fuel economy without sacrificing durability. The pursuit of better fuel economy drives trends like downsizing, turbocharging and direct injection fuelling systems that increase cylinder pressures and create a more arduous operating environment for the piston ring / cylinder bore tribocouple. The power-cylinder lubricant is therefore put under increased stress as modern engine technology continues to evolve. The conventional approach to investigating fundamental power-cylinder tribology employs bench-tests founded on assumptions which allow for simplification of experimental conditions.
Journal Article

Fundamental Understanding of Antiwear Mechanisms in Real-World Applications: Part 2

2017-08-25
2017-01-9382
The global commitment to reduce CO2 emissions drives the automotive industry to create ever more advanced chemical and engineering systems. Better vehicle fuel efficiency is demanded which forces the rapid evolution of the internal combustion engine and its system components. Advancing engine and emission system technology places increasingly complex demands on the lubricant. Additive system development is required to formulate products capable of surpassing these demands and enabling further reductions in greenhouse gas emissions. This paper reports a novel method of generating fundamental structure-performance knowledge with real-world meaning. Traditional antiwear molecule performance mechanisms are explored and compared with the next generation of surface active additive system (SAAS) formulated with only Nitrogen, Oxygen, Carbon and Hydrogen (NOCH).
X